6,136 research outputs found

    Note on Integer Factoring Methods IV

    Get PDF
    This note continues the theoretical development of deterministic integer factorization algorithms based on systems of polynomials equations. The main result establishes a new deterministic time complexity bench mark in integer factorization.Comment: 20 Pages, New Versio

    Factoring Safe Semiprimes with a Single Quantum Query

    Full text link
    Shor's factoring algorithm (SFA), by its ability to efficiently factor large numbers, has the potential to undermine contemporary encryption. At its heart is a process called order finding, which quantum mechanics lets us perform efficiently. SFA thus consists of a \emph{quantum order finding algorithm} (QOFA), bookended by classical routines which, given the order, return the factors. But, with probability up to 1/21/2, these classical routines fail, and QOFA must be rerun. We modify these routines using elementary results in number theory, improving the likelihood that they return the factors. The resulting quantum factoring algorithm is better than SFA at factoring safe semiprimes, an important class of numbers used in cryptography. With just one call to QOFA, our algorithm almost always factors safe semiprimes. As well as a speed-up, improving efficiency gives our algorithm other, practical advantages: unlike SFA, it does not need a randomly picked input, making it simpler to construct in the lab; and in the (unlikely) case of failure, the same circuit can be rerun, without modification. We consider generalizing this result to other cases, although we do not find a simple extension, and conclude that SFA is still the best algorithm for general numbers (non safe semiprimes, in other words). Even so, we present some simple number theoretic tricks for improving SFA in this case.Comment: v2 : Typo correction and rewriting for improved clarity v3 : Slight expansion, for improved clarit
    • …
    corecore