500 research outputs found

    H2-ARQ-relaying: spectrum and energy efficiency perspectives

    Get PDF
    In this paper, we propose novel Hybrid Automatic Repeat re-Quest (HARQ) strategies used in conjunction with hybrid relaying schemes, named as H2-ARQ-Relaying. The strategies allow the relay to dynamically switch between amplify-and-forward/compress-and-forward and decode-and-forward schemes according to its decoding status. The performance analysis is conducted from both the spectrum and energy efficiency perspectives. The spectrum efficiency of the proposed strategies, in terms of the maximum throughput, is significantly improved compared with their non-hybrid counterparts under the same constraints. The consumed energy per bit is optimized by manipulating the node activation time, the transmission energy and the power allocation between the source and the relay. The circuitry energy consumption of all involved nodes is taken into consideration. Numerical results shed light on how and when the energy efficiency can be improved in cooperative HARQ. For instance, cooperative HARQ is shown to be energy efficient in long distance transmission only. Furthermore, we consider the fact that the compress-and-forward scheme requires instantaneous signal to noise ratios of all three constituent links. However, this requirement can be impractical in some cases. In this regard, we introduce an improved strategy where only partial and affordable channel state information feedback is needed

    Link Quality Control Mechanism for Selective and Opportunistic AF Relaying in Cooperative ARQs: A MLSD Perspective

    Full text link
    Incorporating relaying techniques into Automatic Repeat reQuest (ARQ) mechanisms gives a general impression of diversity and throughput enhancements. Allowing overhearing among multiple relays is also a known approach to increase the number of participating relays in ARQs. However, when opportunistic amplify-and-forward (AF) relaying is applied to cooperative ARQs, the system design becomes nontrivial and even involved. Based on outage analysis, the spatial and temporal diversities are first found sensitive to the received signal qualities of relays, and a link quality control mechanism is then developed to prescreen candidate relays in order to explore the diversity of cooperative ARQs with a selective and opportunistic AF (SOAF) relaying method. According to the analysis, the temporal and spatial diversities can be fully exploited if proper thresholds are set for each hop along the relaying routes. The SOAF relaying method is further examined from a packet delivery viewpoint. By the principle of the maximum likelihood sequence detection (MLSD), sufficient conditions on the link quality are established for the proposed SOAF-relaying-based ARQ scheme to attain its potential diversity order in the packet error rates (PERs) of MLSD. The conditions depend on the minimum codeword distance and the average signal-to-noise ratio (SNR). Furthermore, from a heuristic viewpoint, we also develop a threshold searching algorithm for the proposed SOAF relaying and link quality method to exploit both the diversity and the SNR gains in PER. The effectiveness of the proposed thresholding mechanism is verified via simulations with trellis codes.Comment: This paper has been withdrawn by the authors due to an improper proof for Theorem 2. To avoid a misleading understanding, we thus decide to withdraw this pape

    Green Communication via Power-optimized HARQ Protocols

    Get PDF
    Recently, efficient use of energy has become an essential research topic for green communication. This paper studies the effect of optimal power controllers on the performance of delay-sensitive communication setups utilizing hybrid automatic repeat request (HARQ). The results are obtained for repetition time diversity (RTD) and incremental redundancy (INR) HARQ protocols. In all cases, the optimal power allocation, minimizing the outage-limited average transmission power, is obtained under both continuous and bursting communication models. Also, we investigate the system throughput in different conditions. The results indicate that the power efficiency is increased substantially, if adaptive power allocation is utilized. For instance, assume Rayleigh-fading channel, a maximum of two (re)transmission rounds with rates {1,12}\{1,\frac{1}{2}\} nats-per-channel-use and an outage probability constraint 10−3{10}^{-3}. Then, compared to uniform power allocation, optimal power allocation in RTD reduces the average power by 9 and 11 dB in the bursting and continuous communication models, respectively. In INR, these values are obtained to be 8 and 9 dB, respectively.Comment: Accepted for publication on IEEE Transactions on Vehicular Technolog
    • …
    corecore