7,385 research outputs found

    Equines and Equations: A Mathematical view of Equine Movement and Lameness

    Get PDF

    Dynamics are Important for the Recognition of Equine Pain in Video

    Full text link
    A prerequisite to successfully alleviate pain in animals is to recognize it, which is a great challenge in non-verbal species. Furthermore, prey animals such as horses tend to hide their pain. In this study, we propose a deep recurrent two-stream architecture for the task of distinguishing pain from non-pain in videos of horses. Different models are evaluated on a unique dataset showing horses under controlled trials with moderate pain induction, which has been presented in earlier work. Sequential models are experimentally compared to single-frame models, showing the importance of the temporal dimension of the data, and are benchmarked against a veterinary expert classification of the data. We additionally perform baseline comparisons with generalized versions of state-of-the-art human pain recognition methods. While equine pain detection in machine learning is a novel field, our results surpass veterinary expert performance and outperform pain detection results reported for other larger non-human species.Comment: CVPR 2019: IEEE Conference on Computer Vision and Pattern Recognitio

    Going Deeper than Tracking: A Survey of Computer-Vision Based Recognition of Animal Pain and Emotions

    Get PDF
    Advances in animal motion tracking and pose recognition have been a game changer in the study of animal behavior. Recently, an increasing number of works go 'deeper' than tracking, and address automated recognition of animals' internal states such as emotions and pain with the aim of improving animal welfare, making this a timely moment for a systematization of the field. This paper provides a comprehensive survey of computer vision-based research on recognition of pain and emotional states in animals, addressing both facial and bodily behavior analysis. We summarize the efforts that have been presented so far within this topic-classifying them across different dimensions, highlight challenges and research gaps, and provide best practice recommendations for advancing the field, and some future directions for research

    Artificial Intelligence for Lameness Detection in Horses-A Preliminary Study

    Get PDF
    Simple Summary In the expanding field of artificial intelligence, deep learning and smart-device-technology, a diagnostic software tool was developed, which can help distinguish between lame and sound horses and locate the affected limb. As lameness influences the welfare of horses and is often difficult to detect, this tool can help owners and veterinarians in the process of evaluation. The technology is based on pose estimation, which is already used in human and veterinary science to study movement of limbs or bodies without the need to fix any devices onto the object of interest. In this study, 22 horses with unilateral fore- or hindlimb lameness and a control group of eight sound horses were analysed with the program. Based on the results of the program, it was possible to differentiate between horses with fore- and hindlimb lameness and sound horses. Difficult light settings, such as direct sunlight or darkness, or very even-coloured coats, complicate the precise placement of reference points. The analysis and detection with software-generated movement trajectories using pose estimation is very promising but requires further development. Lameness in horses is a long-known issue influencing the welfare, as well as the use, of a horse. Nevertheless, the detection and classification of lameness mainly occurs on a subjective basis by the owner and the veterinarian. The aim of this study was the development of a lameness detection system based on pose estimation, which permits non-invasive and easily applicable gait analysis. The use of 58 reference points on easily detectable anatomical landmarks offers various possibilities for gait evaluation using a simple setup. For this study, three groups of horses were used: one training group, one analysis group of fore and hindlimb lame horses and a control group of sound horses. The first group was used to train the network;afterwards, horses with and without lameness were evaluated. The results show that forelimb lameness can be detected by visualising the trajectories of the reference points on the head and both forelimbs. In hindlimb lameness, the stifle showed promising results as a reference point, whereas the tuber coxae were deemed unsuitable as a reference point. The study presents a feasible application of pose estimation for lameness detection, but further development using a larger dataset is essential

    Biomechanics

    Get PDF
    Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists

    Investigation of the use of inertial sensing equipment for the measurement of hip flexion and pelvic rotation in horse riders

    Get PDF
    Equestrian sports report three to five times higher incidence rates for lower back pain than that of the general population, with hip flexion angles of 50-60° suggested as a causal factor. Inertial motion capture technology enables dynamic measurement of rider kinematics but data extraction is time-consuming. The aim of this study was to develop a software tool to automate the process of extracting biomechanical data from the XsensTM MVN (MoCap) system to investigate postural changes in riders, comparing static position at halt with dynamic position during the sit phase of rising trot. The software was found to be efficient, reducing data extraction time by 97% when used with a sample of 16 riders. Good correlation was found between hip flexion and pelvic anterior-posterior rotation and between halt and trot but with significantly greater values of hip flexion and pelvic anterior rotation in trot. No riders showed hip flexion >50° at halt but 11 riders (69%) showed hip flexion >50° during the sit phase of rising trot, indicating that dynamic assessment is important when considering rider postural faults that may put them at risk of back injury. Keywords: Hip flexion, Horse rider, Inertial sensor, Motion capture, Pelvic rotatio
    • …
    corecore