1,257 research outputs found

    An Efficient Approach for Line-Following Automated Guided Vehicles Based on Fuzzy Inference Mechanism

    Get PDF
    Recently, there has been increasing attention paid to AGV (Automated Guided Vehicle) in factories and warehouses to enhance the level of automation. In order to improve productivity, it is necessary to increase the efficiency of the AGV, including working speed and accuracy. This study presents a fuzzy-PID controller for improving the efficiency of a line-following AGV. A line-following AGV suffers from tracking errors, especially on curved paths, which causes a delay in the lap time. The fuzzy-PID controller in this study mimics the principle of human vehicle control as the situation-aware speed adjustment on curved paths. Consequently, it is possible to reduce the tracking error of AGV and improve its speed. Experimental results show that the Fuzzy-PID controller outperforms the PID controller in both accuracy and speed, especially the lap time of a line-following AGV is enhanced up to 28.6% with the proposed fuzzy-PID controller compared to that with the PID controller only

    Making Transport Safer: V2V-Based Automated Emergency Braking System

    Get PDF
    An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    Optimal trajectory planning for a UAV glider using atmospheric thermals

    Get PDF
    An Unmanned Aerial Vehicle Glider (UAV glider) uses atmospheric energy in its different forms to remain aloft for extended flight durations. This UAV glider\u27s aim is to extract atmospheric thermal energy and use it to supplement its battery energy usage and increase the mission period. Given an infrared camera identified atmospheric thermal of known strength and location; current wind speed and direction; current battery level; altitude and location of the UAV glider; and estimating the expected altitude gain from the thermal, is it possible to make an energy efficient based motivation to fly to an atmospheric thermal so as to achieve UAV glider extended flight time? For this work, an infrared thermal camera aboard the UAV glider takes continuous forward-looking ground images of hot spots . Through image processing a candidate atmospheric thermal strength and location is estimated. An Intelligent Decision Model incorporates this information with the current UAV glider status and weather conditions to provide an energy-based recommendation to modify the flight path of the UAV glider. Research, development, and simulation of the Intelligent Decision Model is the primary focus of this work. Three models are developed: (1) Battery Usage Model, (2) Intelligent Decision Model, and (3) Altitude Gain Model. The Battery Usage Model comes from the candidate flight trajectory, wind speed & direction and aircraft dynamic model. Intelligent Decision Model uses a fuzzy logic based approach. The Altitude Gain Model requires the strength and size of the thermal and is found a priori

    Navigation and Control of Automated Guided Vehicle using Fuzzy Inference System and Neural Network Technique

    Get PDF
    Automatic motion planning and navigation is the primary task of an Automated Guided Vehicle (AGV) or mobile robot. All such navigation systems consist of a data collection system, a decision making system and a hardware control system. Artificial Intelligence based decision making systems have become increasingly more successful as they are capable of handling large complex calculations and have a good performance under unpredictable and imprecise environments. This research focuses on developing Fuzzy Logic and Neural Network based implementations for the navigation of an AGV by using heading angle and obstacle distances as inputs to generate the velocity and steering angle as output. The Gaussian, Triangular and Trapezoidal membership functions for the Fuzzy Inference System and the Feed forward back propagation were developed, modelled and simulated on MATLAB. The reserach presents an evaluation of the four different decision making systems and a study has been conducted to compare their performances. The hardware control for an AGV should be robust and precise. For practical implementation a prototype, that functions via DC servo motors and a gear systems, was constructed and installed on a commercial vehicle

    Mobile Robot Path Following Controller Based On the Sirms Dynamically Connected Fuzzy Inference Model

    Get PDF
    This paper presents a simple and effective way to implement a path following controller for a differential drive wheeled mobile robot based on the single input rule modules (SIRMs) dynamically connected fuzzy inference model. The control of the mobile robot is divided into two control actions performed in parallel; the heading and the velocity controller. For the heading controller, each input item is assigned with a SIRM and a dynamic importance degree (DID). The velocity controller structure was modified to simplify the design and to fulfill the requirements of the path following method. Here, a common DID is used. The SIRMs and the dynamic importance degrees are designed such that the angular velocity control takes the highest priority over the linear velocity control of the mobile robot. By using the SIRMs and the dynamic importance degrees, the priority orders of the controls are automatically adjusted according to navigation situations. The proposed fuzzy controller has a simple and intuitively understandable structure, and executes the two control actions entirely in parallel. Simulation results show that the proposed fuzzy controller can drive a mobile robot smoothly with a high precision through a series of waypoints to attain its final target in short time

    Mobile Robot Path Following Controller Based On the Sirms Dynamically Connected Fuzzy Inference Model

    Get PDF
    This paper presents a simple and effective way to implement a path following controller for a differential drive wheeled mobile robot based on the single input rule modules (SIRMs) dynamically connected fuzzy inference model. The control of the mobile robot is divided into two control actions performed in parallel; the heading and the velocity controller. For the heading controller, each input item is assigned with a SIRM and a dynamic importance degree (DID). The velocity controller structure was modified to simplify the design and to fulfill the requirements of the path following method. Here, a common DID is used. The SIRMs and the dynamic importance degrees are designed such that the angular velocity control takes the highest priority over the linear velocity control of the mobile robot. By using the SIRMs and the dynamic importance degrees, the priority orders of the controls are automatically adjusted according to navigation situations. The proposed fuzzy controller has a simple and intuitively understandable structure, and executes the two control actions entirely in parallel. Simulation results show that the proposed fuzzy controller can drive a mobile robot smoothly with a high precision through a series of waypoints to attain its final target in short time

    Design of a semi-autonomous modular robotic vehicle for gas pipeline inspection

    Get PDF
    This paper presents a new solution for inspecting and repairing defects in live gas pipelines. The proposed approach is the development of a modular and semi-autonomous vehicle system. The robotic system has a drive mechanism, capable of navigating and adjusting its orientation in various configurations of pipelines. Other features of the system are cable-free communications, semi-autonomous motion control as well as integration of sensory devices. The robotic system is designed to traverse in 150-300 mm diameter pipes through straight and curved sections, junctions and reducers. The vehicle control and navigation technique is implemented using a two-mode controller consisting of a proportional-integral-derivative (PID) and fuzzy logic control. Unlike other available systems, the vehicle employs proprioceptive sensors to monitor its own states. The fuzzy logic controller is used to evaluate the sensor outputs such as speed, climbing angle and rate of change of climbing angle. This control technique allows the vehicle to drive and adapt in a partially observable gas pipe system. Laboratory experiment results are presented. The paper also describes a cable-free communication method for the system. A brief account of typical pipe environments and currently available inspection tools is presented as background information
    corecore