9,971 research outputs found

    Rateless Codes with Progressive Recovery for Layered Multimedia Delivery

    Full text link
    This paper proposes a novel approach, based on unequal error protection, to enhance rateless codes with progressive recovery for layered multimedia delivery. With a parallel encoding structure, the proposed Progressive Rateless codes (PRC) assign unequal redundancy to each layer in accordance with their importance. Each output symbol contains information from all layers, and thus the stream layers can be recovered progressively at the expected received ratios of output symbols. Furthermore, the dependency between layers is naturally considered. The performance of the PRC is evaluated and compared with some related UEP approaches. Results show that our PRC approach provides better recovery performance with lower overhead both theoretically and numerically

    Unequal Error Protected JPEG 2000 Broadcast Scheme with Progressive Fountain Codes

    Full text link
    This paper proposes a novel scheme, based on progressive fountain codes, for broadcasting JPEG 2000 multimedia. In such a broadcast scheme, progressive resolution levels of images/video have been unequally protected when transmitted using the proposed progressive fountain codes. With progressive fountain codes applied in the broadcast scheme, the resolutions of images (JPEG 2000) or videos (MJPEG 2000) received by different users can be automatically adaptive to their channel qualities, i.e. the users with good channel qualities are possible to receive the high resolution images/vedio while the users with bad channel qualities may receive low resolution images/vedio. Finally, the performance of the proposed scheme is evaluated with the MJPEG 2000 broadcast prototype

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally. © 2009 IEEE

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally. © 2009 IEEE
    • …
    corecore