168 research outputs found

    Relay Switching Aided Turbo Coded Hybrid-ARQ for Correlated Fading Channel

    No full text
    Hybrid-Automatic-Repeat-reQuest (HARQ) has become an indispensable technique in reliable communications systems. However, its performance is inevitably affected by the channel’s fading correlation. In this paper, we proposed a novel relay-switching aided HARQ scheme in order to mitigate the detrimental effects of correlated fading without unduly increasing the system’s complexity and delay. Our results show that the proposed relay-switching regime operates efficiently in correlated channels, hence significantly reduces the error floor of turbo-coded HARQ. Additionally, a HARQ scheme using Segment Selective Repeat (SSR) is incorporated in the relay-switching scheme for achieving further improvements. Quantitatively, the proposed relay-switching aided turbo-coded HARQ scheme using SSR may achieve an approximately 2 dB gain, compared to the conventional amplify-and-forward aided turbo coded HARQ arrangement using Chase Combining. Index Terms - Relay switching, correlated fading channel, Hybrid-ARQ, turbo codes, chase combining, incremental redundancy, selective segment repeat

    Green Communication via Power-optimized HARQ Protocols

    Get PDF
    Recently, efficient use of energy has become an essential research topic for green communication. This paper studies the effect of optimal power controllers on the performance of delay-sensitive communication setups utilizing hybrid automatic repeat request (HARQ). The results are obtained for repetition time diversity (RTD) and incremental redundancy (INR) HARQ protocols. In all cases, the optimal power allocation, minimizing the outage-limited average transmission power, is obtained under both continuous and bursting communication models. Also, we investigate the system throughput in different conditions. The results indicate that the power efficiency is increased substantially, if adaptive power allocation is utilized. For instance, assume Rayleigh-fading channel, a maximum of two (re)transmission rounds with rates {1,12}\{1,\frac{1}{2}\} nats-per-channel-use and an outage probability constraint 103{10}^{-3}. Then, compared to uniform power allocation, optimal power allocation in RTD reduces the average power by 9 and 11 dB in the bursting and continuous communication models, respectively. In INR, these values are obtained to be 8 and 9 dB, respectively.Comment: Accepted for publication on IEEE Transactions on Vehicular Technolog

    Backlog and Delay Reasoning in HARQ Systems

    Full text link
    Recently, hybrid-automatic-repeat-request (HARQ) systems have been favored in particular state-of-the-art communications systems since they provide the practicality of error detections and corrections aligned with repeat-requests when needed at receivers. The queueing characteristics of these systems have taken considerable focus since the current technology demands data transmissions with a minimum delay provisioning. In this paper, we investigate the effects of physical layer characteristics on data link layer performance in a general class of HARQ systems. Constructing a state transition model that combines queue activity at a transmitter and decoding efficiency at a receiver, we identify the probability of clearing the queue at the transmitter and the packet-loss probability at the receiver. We determine the effective capacity that yields the maximum feasible data arrival rate at the queue under quality-of-service constraints. In addition, we put forward non-asymptotic backlog and delay bounds. Finally, regarding three different HARQ protocols, namely Type-I HARQ, HARQ-chase combining (HARQ-CC) and HARQ-incremental redundancy (HARQ-IR), we show the superiority of HARQ-IR in delay robustness over the others. However, we further observe that the performance gap between HARQ-CC and HARQ-IR is quite negligible in certain cases. The novelty of our paper is a general cross-layer analysis of these systems, considering encoding/decoding in the physical layer and delay aspects in the data-link layer
    corecore