1,173 research outputs found

    Control of LED Emission with Functional Dielectric Metasurfaces

    Full text link
    The improvement of light-emitting diodes (LEDs) is one of the major goals of optoelectronics and photonics research. While emission rate enhancement is certainly one of the targets, in this regard, for LED integration to complex photonic devices, one would require to have, additionally, precise control of the wavefront of the emitted light. Metasurfaces are spatial arrangements of engineered scatters that may enable this light manipulation capability with unprecedented resolution. Most of these devices, however, are only able to function properly under irradiation of light with a large spatial coherence, typically normally incident lasers. LEDs, on the other hand, have angularly broad, Lambertian-like emission patterns characterized by a low spatial coherence, which makes the integration of metasurface devices on LED architectures extremely challenging. A novel concept for metasurface integration on LED is proposed, using a cavity to increase the LED spatial coherence through an angular collimation. Due to the resonant character of the cavity, extending the spatial coherence of the emitted light does not come at the price of any reduction in the total emitted power. The experimental demonstration of the proposed concept is implemented on a GaP LED architecture including a hybrid metallic-Bragg cavity. By integrating a silicon metasurface on top we demonstrate two different functionalities of these compact devices: directional LED emission at a desired angle and LED emission of a vortex beam with an orbital angular momentum. The presented concept is general, being applicable to other incoherent light sources and enabling metasurfaces designed for plane waves to work with incoherent light emitters.Comment: 29 pages, 6 figure

    Cavity-induced damping and level shifts in a wide aperture spherical resonator

    Full text link
    We calculate explicitly the space dependence of the radiative relaxation rates and associated level shifts for a dipole placed in the vicinity of the center of a spherical cavity with a large numerical aperture and a relatively low finesse. In particular, we give simple and useful analytic formulas for these quantities, that can be used with arbitrary mirrors transmissions. The vacuum field in the vicinity of the center of the cavity is actually equivalent to the one obtained in a microcavity, and this scheme allows one to predict significant cavity QED effects.Comment: 28 pages, 5 figures. In v2 some references and appendices adde

    Preliminary studies for anapole moment measurements in rubidium and francium

    Full text link
    Preparations for the anapole measurement in Fr indicate the possibility of performing a similar measurement in a chain of Rb. The sensitivity analysis based on a single nucleon model shows the potential for placing strong limits on the nucleon weak interaction parameters. There are values of the magnetic fields at much lower values than found before that are insensitive to first order changes in the field. The anapole moment effect in Rb corresponds to an equivalent electric field that is eighty times smaller than Fr, but the stability of the isotopes and the current performance of the dipole trap in the apparatus, presented here, are encouraging for pursuing the measurment.Comment: 16 pages, 6 figures. Accepted for publication in the J. Phys.

    Topological Frequency Conversion in a Driven Dissipative Quantum Cavity

    Get PDF
    Recent work (PRX 7, 041008) has shown that a spin coupled to two externally supplied circularly-polarized electromagnetic modes can effectuate a topological, quantized transfer of photons from one mode to the other. Here we study the effect in the case when only one of the modes is externally provided, while the other is a dynamical quantum mechanical cavity mode. Focusing on the signatures and stability under experimentally accessible conditions, we show that the effect persists down to the few-photon quantum limit and that it can be used to generate highly entangled "cat states" of cavity and spin. By tuning the strength of the external drive to a "sweet spot", the quantized pumping can arise starting from an empty (zero photon) cavity state. We also find that inclusion of external noise and dissipation does not suppress but rather stabilizes the conversion effect, even after multiple cavity modes are taken into account.Comment: 12 pages, 6 figure
    • …
    corecore