158 research outputs found

    Multiproduct supplye chain analysis through by simulation with kanban and EOQ system

    Get PDF
    This work reviews lean literature on the supply chain focused on the operational approach, from the lean management to the Kanban system. But, the main issue of this work is to analyze the behavior of a lean supply chain using a Kanban system managing the planning in two different ways. The difference between both is related to the production order or sequence to follow: the product with fewer inventories in stock (the most critical to run out) or the one which requires less set-up time to optimize unproductive times. The study the behavior of the supply chain, it would be done through simulation with many different scenarios: 5 different demands, each one with two coefficients of variance, 4 different batch sizes, 4 different compositions of production and process saturation and ensuring different service levels between 92% and 98%. To compare these supply chain models, an approach of the supply chain using the EOQ (Economic Order Quantity) system will be also simulated in the same conditions but with one batch size, the most economic one

    Multi-product cost and value stream modelling in support of business process analysis

    Get PDF
    To remain competitive, most Manufacturing Enterprises (MEs) need cost effective and responsive business processes with capability to realise multiple value streams specified by changes in customer needs. To achieve this, there is the need to provide reusable computational representations of organisational structures, processes, information, resources and related cost and value flows especially in enterprises realizing multiple products. Current best process mapping techniques do not suitably capture attributes of MEs and their systems and thus dynamics associated with multi-product flows which impact on cost and value generation cannot be effectively modelled and used as basis for decision making. Therefore, this study has developed an integrated multiproduct dynamic cost and value stream modelling technique with the embedded capability of capturing aspects of dynamics associated with multiple product realization in MEs. The integrated multiproduct dynamic cost and value stream modelling technique rests on well experimented technologies in the domains of process mapping, enterprise modelling, system dynamics and discrete event simulation modelling. The applicability of the modelling technique was tested in four case study scenarios. The results generated out of the application of the modelling technique in solving key problems in case study companies, showed that the derived technique offers better solutions in designing, analysing, estimating cost and values and improving processes required for the realization of multiple products in MEs, when compared with current lean based value stream mapping techniques. Also the developed technique provides new modelling constructs which best describe process entities, variables and business indicators in support of enterprise systems design and business process (re) engineering. In addition to these benefits, an enriched approach for translating qualitative causal loop models into quantitative simulation models for parametric analysis of the impact of dynamic entities on processes has been introduced. Further work related to this research will include the extension of the technique to capture relevant strategic and tactical processes for in-depth analysis and improvements. Also further research related to the application of the dynamic producer unit concept in the design of MEs will be required

    Certainty Equivalent Planning for Multi-Product Batch Differentiation: Analysis and Bounds

    Full text link
    We consider a multi-period planning problem faced by a firm that must coordinate the production and allocations of batches to end products for multiple markets. Motivated by a problem faced by a biopharmaceutical firm, we model this as a discrete-time inventory planning problem where in each period the firm must decide how many batches to produce and how to differentiate batches to meet demands for different end products. This is a challenging problem to solve optimally, so we derive a theoretical bound on the performance of a Certainty Equivalent (CE) control for this model, in which all random variables are replaced by their expected values and the corresponding deterministic optimization problem is solved. This is a variant of an approach that is widely used in practice. We show that while a CE control can perform very poorly in certain instances, a simple re-optimization of the CE control in each period can substantially improve both the theoretical and computational performance of the heuristic, and we bound the performance of this re-optimization. To address the limitations of CE control and provide guidance for heuristic design, we also derive performance bounds for two additional heuristic controls -- (1) Re-optimized Stochastic Programming (RSP), which utilizes full demand distribution but limits the adaptive nature of decision dynamics, and (2) Multi-Point Approximation (MPA), which uses limited demand information to model uncertainty but fully capture the adaptive nature of decision dynamics. We show that although RSP in general outperforms the re-optimized CE control, the improvement is limited. On the other hand, with a carefully chosen demand approximation in each period, MPA can significantly outperform RSP. This suggests that, in our setting, explicitly capturing decision dynamics adds more value than simply capturing full demand information.http://deepblue.lib.umich.edu/bitstream/2027.42/116386/1/1296_Ahn.pd

    Efficient Real-time Policies for Revenue Management Problems

    Full text link
    This dissertation studies the development of provably near-optimal real-time prescriptive analytics solutions that are easily implementable in a dynamic business environment. We consider several stochastic control problems that are motivated by different applications of the practice of pricing and revenue management. Due to high dimensionality and the need for real-time decision making, it is computationally prohibitive to characterize the optimal controls for these problems. Therefore, we develop heuristic controls with simple decision rules that can be deployed in real-time at large scale, and then show theirs good theoretical and empirical performances. In particular, the first chapter studies the joint dynamic pricing and order fulfillment problem in the context of online retail, where a retailer sells multiple products to customers from different locations and fulfills orders through multiple fulfillment centers. The objective is to maximize the total expected profits, defined as the revenue minus the shipping cost. We propose heuristics where the real-time computations of pricing and fulfillment decisions are partially decoupled, and show their good performances compared to reasonable benchmarks. The second chapter studies a dynamic pricing problem where a firm faces price-sensitive customers arriving stochastically over time. Each customer consumes one unit of resource for a deterministic amount of time, after which the resource can be immediately used to serve new customers. We develop two heuristic controls and show that both are asymptotically optimal in the regime with large demand and supply. We further generalize both of the heuristic controls to the settings with multiple service types requiring different service times and with advance reservation. Lastly, the third chapter considers a general class of single-product dynamic pricing problems with inventory constraints, where the price-dependent demand function is unknown to the firm. We develop nonparametric dynamic pricing algorithms that do not assume any functional form of the demand model and show that, for one of the algorithm, its revenue loss compared to a clairvoyant matches the theoretic lower bound in asymptotic regime. In particular, the proposed algorithms generalize the classic bisection search method to a constrained setting with noisy observations.PHDBusiness AdministrationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145995/1/leiyz_1.pd

    Modeling and computational issues in the development of batch processes

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1997.Includes bibliographical references (p. 385-401).by Russell John Allgor.Ph.D
    corecore