4,352 research outputs found

    Improved Spectrum Mobility using Virtual Reservation in Collaborative Cognitive Radio Networks

    Full text link
    Cognitive radio technology would enable a set of secondary users (SU) to opportunistically use the spectrum licensed to a primary user (PU). On the appearance of this PU on a specific frequency band, any SU occupying this band should free it for PUs. Typically, SUs may collaborate to reduce the impact of cognitive users on the primary network and to improve the performance of the SUs. In this paper, we propose and analyze the performance of virtual reservation in collaborative cognitive networks. Virtual reservation is a novel link maintenance strategy that aims to maximize the throughput of the cognitive network through full spectrum utilization. Our performance evaluation shows significant improvements not only in the SUs blocking and forced termination probabilities but also in the throughput of cognitive users.Comment: 7 pages, 10 figures, IEEE ISCC 201

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Design and Optimal Configuration of Full-Duplex MAC Protocol for Cognitive Radio Networks Considering Self-Interference

    Get PDF
    In this paper, we propose an adaptive Medium Access Control (MAC) protocol for full-duplex (FD) cognitive radio networks in which FD secondary users (SUs) perform channel contention followed by concurrent spectrum sensing and transmission, and transmission only with maximum power in two different stages (called the FD sensing and transmission stages, respectively) in each contention and access cycle. The proposed FD cognitive MAC (FDC-MAC) protocol does not require synchronization among SUs and it efficiently utilizes the spectrum and mitigates the self-interference in the FD transceiver. We then develop a mathematical model to analyze the throughput performance of the FDC-MAC protocol where both half-duplex (HD) transmission (HDTx) and FD transmission (FDTx) modes are considered in the transmission stage. Then, we study the FDC-MAC configuration optimization through adaptively controlling the spectrum sensing duration and transmit power level in the FD sensing stage where we prove that there exists optimal sensing time and transmit power to achieve the maximum throughput and we develop an algorithm to configure the proposed FDC-MAC protocol. Extensive numerical results are presented to illustrate the characteristic of the optimal FDC-MAC configuration and the impacts of protocol parameters and the self-interference cancellation quality on the throughput performance. Moreover, we demonstrate the significant throughput gains of the FDC-MAC protocol with respect to existing half-duplex MAC (HD MAC) and single-stage FD MAC protocols.Comment: To Appear, IEEE Access, 201
    • …
    corecore