995 research outputs found

    Majority is not Enough: Bitcoin Mining is Vulnerable

    Full text link
    The Bitcoin cryptocurrency records its transactions in a public log called the blockchain. Its security rests critically on the distributed protocol that maintains the blockchain, run by participants called miners. Conventional wisdom asserts that the protocol is incentive-compatible and secure against colluding minority groups, i.e., it incentivizes miners to follow the protocol as prescribed. We show that the Bitcoin protocol is not incentive-compatible. We present an attack with which colluding miners obtain a revenue larger than their fair share. This attack can have significant consequences for Bitcoin: Rational miners will prefer to join the selfish miners, and the colluding group will increase in size until it becomes a majority. At this point, the Bitcoin system ceases to be a decentralized currency. Selfish mining is feasible for any group size of colluding miners. We propose a practical modification to the Bitcoin protocol that protects against selfish mining pools that command less than 1/4 of the resources. This threshold is lower than the wrongly assumed 1/2 bound, but better than the current reality where a group of any size can compromise the system

    A Deep Dive into Blockchain Selfish Mining

    Get PDF
    This paper studies a fundamental problem regarding the security of blockchain on how the existence of multiple misbehaving pools influences the profitability of selfish mining. Each selfish miner maintains a private chain and makes it public opportunistically for the purpose of acquiring more rewards incommensurate to his Hashrate. We establish a novel Markov chain model to characterize all the state transitions of public and private chains. The minimum requirement of Hashrate together with the minimum delay of being profitable is derived in close-form. The former reduces to 21.48% with the symmetric selfish miners, while their competition with asymmetric Hashrates puts forward a higher requirement of the profitable threshold. The profitable delay increases with the decrease of the Hashrate of selfish miners, making the mining pools more cautious on performing selfish mining.Comment: 6 pages, 13 figure

    Impact of Geo-distribution and Mining Pools on Blockchains: A Study of Ethereum

    Full text link
    Given the large adoption and economical impact of permissionless blockchains, the complexity of the underlying systems and the adversarial environment in which they operate, it is fundamental to properly study and understand the emergent behavior and properties of these systems. We describe our experience on a detailed, one-month study of the Ethereum network from several geographically dispersed observation points. We leverage multiple geographic vantage points to assess the key pillars of Ethereum, namely geographical dispersion, network efficiency, blockchain efficiency and security, and the impact of mining pools. Among other new findings, we identify previously undocumented forms of selfish behavior and show that the prevalence of powerful mining pools exacerbates the geographical impact on block propagation delays. Furthermore, we provide a set of open measurement and processing tools, as well as the data set of the collected measurements, in order to promote further research on understanding permissionless blockchains.Comment: To appear in 50th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 202
    corecore