4,107 research outputs found

    DESIGN AND EVALUATION OF RESOURCE ALLOCATION AND JOB SCHEDULING ALGORITHMS ON COMPUTATIONAL GRIDS

    Get PDF
    Grid, an infrastructure for resource sharing, currently has shown its importance in many scientific applications requiring tremendously high computational power. Grid computing enables sharing, selection and aggregation of resources for solving complex and large-scale scientific problems. Grids computing, whose resources are distributed, heterogeneous and dynamic in nature, introduces a number of fascinating issues in resource management. Grid scheduling is the key issue in grid environment in which its system must meet the functional requirements of heterogeneous domains, which are sometimes conflicting in nature also, like user, application, and network. Moreover, the system must satisfy non-functional requirements like reliability, efficiency, performance, effective resource utilization, and scalability. Thus, overall aim of this research is to introduce new grid scheduling algorithms for resource allocation as well as for job scheduling for enabling a highly efficient and effective utilization of the resources in executing various applications. The four prime aspects of this work are: firstly, a model of the grid scheduling problem for dynamic grid computing environment; secondly, development of a new web based simulator (SyedWSim), enabling the grid users to conduct a statistical analysis of grid workload traces and provides a realistic basis for experimentation in resource allocation and job scheduling algorithms on a grid; thirdly, proposal of a new grid resource allocation method of optimal computational cost using synthetic and real workload traces with respect to other allocation methods; and finally, proposal of some new job scheduling algorithms of optimal performance considering parameters like waiting time, turnaround time, response time, bounded slowdown, completion time and stretch time. The issue is not only to develop new algorithms, but also to evaluate them on an experimental computational grid, using synthetic and real workload traces, along with the other existing job scheduling algorithms. Experimental evaluation confirmed that the proposed grid scheduling algorithms possess a high degree of optimality in performance, efficiency and scalability

    DESIGN AND EVALUATION OF RESOURCE ALLOCATION AND JOB SCHEDULING ALGORITHMS ON COMPUTATIONAL GRIDS

    Get PDF
    Grid, an infrastructure for resource sharing, currently has shown its importance in many scientific applications requiring tremendously high computational power. Grid computing enables sharing, selection and aggregation of resources for solving complex and large-scale scientific problems. Grids computing, whose resources are distributed, heterogeneous and dynamic in nature, introduces a number of fascinating issues in resource management. Grid scheduling is the key issue in grid environment in which its system must meet the functional requirements of heterogeneous domains, which are sometimes conflicting in nature also, like user, application, and network. Moreover, the system must satisfy non-functional requirements like reliability, efficiency, performance, effective resource utilization, and scalability. Thus, overall aim of this research is to introduce new grid scheduling algorithms for resource allocation as well as for job scheduling for enabling a highly efficient and effective utilization of the resources in executing various applications. The four prime aspects of this work are: firstly, a model of the grid scheduling problem for dynamic grid computing environment; secondly, development of a new web based simulator (SyedWSim), enabling the grid users to conduct a statistical\ud analysis of grid workload traces and provides a realistic basis for experimentation in resource allocation and job scheduling algorithms on a grid; thirdly, proposal of a new grid resource allocation method of optimal computational cost using synthetic and real workload traces with respect to other allocation methods; and finally, proposal of some new job scheduling algorithms of optimal performance considering parameters like waiting time, turnaround time, response time, bounded slowdown, completion time and stretch time. The issue is not only to develop new algorithms, but also to evaluate them on an experimental computational grid, using synthetic and real workload traces, along with the other existing job scheduling algorithms. Experimental evaluation confirmed that the proposed grid scheduling algorithms possess a high degree of optimality in performance, efficiency and scalability

    Fuzzy C-Mean And Genetic Algorithms Based Scheduling For Independent Jobs In Computational Grid

    Get PDF
    The concept of Grid computing is becoming the most important research area in the high performance computing. Under this concept, the jobs scheduling in Grid computing has more complicated problems to discover a diversity of available resources, select the appropriate applications and map to suitable resources. However, the major problem is the optimal job scheduling, which Grid nodes need to allocate the appropriate resources for each job. In this paper, we combine Fuzzy C-Mean and Genetic Algorithms which are popular algorithms, the Grid can be used for scheduling. Our model presents the method of the jobs classifications based mainly on Fuzzy C-Mean algorithm and mapping the jobs to the appropriate resources based mainly on Genetic algorithm. In the experiments, we used the workload historical information and put it into our simulator. We get the better result when compared to the traditional algorithms for scheduling policies. Finally, the paper also discusses approach of the jobs classifications and the optimization engine in Grid scheduling

    Metascheduling of HPC Jobs in Day-Ahead Electricity Markets

    Full text link
    High performance grid computing is a key enabler of large scale collaborative computational science. With the promise of exascale computing, high performance grid systems are expected to incur electricity bills that grow super-linearly over time. In order to achieve cost effectiveness in these systems, it is essential for the scheduling algorithms to exploit electricity price variations, both in space and time, that are prevalent in the dynamic electricity price markets. In this paper, we present a metascheduling algorithm to optimize the placement of jobs in a compute grid which consumes electricity from the day-ahead wholesale market. We formulate the scheduling problem as a Minimum Cost Maximum Flow problem and leverage queue waiting time and electricity price predictions to accurately estimate the cost of job execution at a system. Using trace based simulation with real and synthetic workload traces, and real electricity price data sets, we demonstrate our approach on two currently operational grids, XSEDE and NorduGrid. Our experimental setup collectively constitute more than 433K processors spread across 58 compute systems in 17 geographically distributed locations. Experiments show that our approach simultaneously optimizes the total electricity cost and the average response time of the grid, without being unfair to users of the local batch systems.Comment: Appears in IEEE Transactions on Parallel and Distributed System
    corecore