9 research outputs found

    Techniques de Pointage à Distance : Cibles Numériques et Cibles Physique

    No full text
    National audienceAu sein d'un environnement ubiquitaire, l'ordinateur devient évanescent : nos objets quotidiens sont augmentés d'électronique, les environnements deviennent perceptifs déconfinant l'interaction homme-machine de l'ancien ordinateur "boîte grise" à des espaces pervasifs. Désormais, l'utilisateur évolue dans un monde physico-numérique ou espace interactif mixte. Au sein de cet espace interactif, un besoin est alors d'interagir à distance que ce soit pour manipuler des objets numériques sur un écran distant ou des objets physiques. Cet article est dédié aux techniques de pointage à distance pour désigner un objet numérique ou physique. Nous décrivons six techniques de pointage pour interagir dans un environnement ubiquitaire, la première pour pointer à distance sur des cibles numériques, les cinq autres pour pointer sur des objets physiques avec et sans un dispositif mobile

    Is movement better? Comparing sedentary and motion-based game controls for older adults

    Get PDF
    Providing cognitive and physical stimulation for older adults is critical for their well-being. Video games offer the opportunity of engaging seniors, and research has shown a variety of positive effects of motion-based video games for older adults. However, little is known about the suitability of motion-based game controls for older adults and how their use is affected by age-related changes. In this paper, we present a study evaluating sedentary and motion-based game controls with a focus on differences between younger and older adults. Our results show that older adults can apply motion-based game controls efficiently, and that they enjoy motion-based interaction. We present design implications based on our study, and demonstrate how our findings can be applied both to motion-based game design and to general interaction design for older adults. Copyright held by authors

    Static Voronoi-Based Target Expansion Technique for Distant Pointing

    No full text
    International audienceAddressing the challenges of distant pointing, we present the feedforward static targeting assistance technique VTE: Voronoi-based Target Expansion. VTE statically displays all the activation areas by dividing the total screen space into areas such that there is only one target inside each area, also called Voronoi tessellation. The key benefit of VTE is in providing the user with an immediate understanding of the targets' activation boundaries before the pointing task even begins: VTE then provides static targeting assistance for both phases of a pointing task, the ballistic motion and the corrective phase. With the goal of making the environment visually uncluttered, we present a first user study to explore the visual parameters of VTE that affect the performance of the technique. In a second user study focusing on static versus dynamic assistance, we compare VTE with Bubble Ray, a dynamic Voronoi-based targeting assistance technique for distant pointing. Results show that VTE significantly outperforms the dynamic assistance technique and is preferred by users both for ray-casting pointing and relative pointing with a hand-controlled cursor

    Summon and Select: Rapid Interaction with Interface Controls in Mid-air

    Get PDF
    International audienceCurrent freehand interactions with large displays rely on point & select as the dominant paradigm. However, constant hand movement in air for pointer navigation leads to hand fatigue quickly. We introduce summon & select, a new model for freehand interaction where, instead of navigating to the control , the user summons it into focus and then manipulates it. Summon & select solves the problems of constant pointer navigation, need for precise selection, and out-of-bounds gestures that plague point & select. We describe the design and conduct two studies to evaluate the design and compare it against point & select in a multi-button selection study. The results show that summon & select is significantly faster and has less physical and mental demand than point & select

    Analysis and comparison of target assistance techniques for relative ray-cast pointing

    No full text
    Pointing at displays from a distance is becoming a common method of interacting with computer applications and entertainment systems, using devices such as the Wii Remote, the PlayStation Move controller, or the Microsoft Kinect. These systems often implement relative forms of ray-cast pointing, in which the user simply points a hand-held input device towards targets on the screen. Ray-casting interaction is easy for novices to learn and understand, but this technique often suffers from accuracy problems: for example, hand jitter, arm fatigue, calibration drift, or lack of skill can all reduce people's ability to acquire and select on-screen targets. In this paper, we analyse and evaluate the idea of target assistance as a way to address the accuracy problems of ray-cast pointing. Although several assistance schemes have been proposed for mouse-based pointing, these ideas have not been tested in distant-pointing settings, and there is little knowledge available to guide design in this increasingly common interaction scenario. To establish this basic design knowledge, we carried out four studies of relative ray-casting using three different target assistance techniques – two motor-space techniques (sticky targets and a novel form of target gravity), and one acquisition-feedback technique that combined visual, tactile, and auditory feedback. Our first three studies tested each assistance technique separately, to explore how different parameters for each method affected performance and perceptibility. Our fourth study carried out a direct comparison of the best versions of each technique, and also examined the effects of distractor objects placed in the path to the target. Our studies found that the two motor-space techniques were extremely effective in improving selection accuracy without being highly obvious to users, and that the new gravity-based technique (which attracts the cursor even when it is not over the target) performed best of all. There was no observed effect on performance when the combined acquisition-feedback technique was used. Our studies are the first to comprehensively explore the optimization, performance, and perceptibility of target assistance techniques for relative ray-casting – our results provide designers with clear guidelines about what methods to use, how to configure the techniques, and what effects can be expected from their use

    Analysis and comparison of target assistance techniques for relative ray-cast pointing

    No full text
    Pointing at displays from a distance is becoming a common method of interacting with computer applications and entertainment systems, using devices such as the Wii Remote, the PlayStation Move controller, or the Microsoft Kinect. These systems often implement relative forms of ray-cast pointing, in which the user simply points a hand-held input device towards targets on the screen. Ray-casting interaction is easy for novices to learn and understand, but this technique often suffers from accuracy problems: for example, hand jitter, arm fatigue, calibration drift, or lack of skill can all reduce people’s ability to acquire and select on-screen targets. In this paper, we analyse and evaluate the idea of target assistance as a way to address the accuracy problems of ray-cast pointing. Although several assistance schemes have been proposed for mouse-based pointing, these ideas have not been tested in distant-pointing settings, and there is little knowledge available to guide design in this increasingly common interaction scenario. To establish this basic design knowledge, we carried out four studies of relative ray-casting using three different target assistance techniques—two motor-space techniques (sticky targets and a novel form of target gravity), and one acquisition-feedback technique that combined visual, tactile, and auditory feedback. Our first three studies tested each assistance technique separately, to explore how different parameters for each method affected performance and perceptibility. Our fourth study carried out a direct comparison of the best versions of each technique, and also examined the effects of distractor objects placed in the path to the target. Our studies found that the two motor-space techniques were extremely effective in improving selection accuracy without being highly obvious to users, and that the new gravity-based technique (which attracts the cursor even when it is not over the target) performed best of all. There was no observed effect on performance when the combined acquisition-feedback technique was used. Our studies are the first to comprehensively explore the optimization, performance, and perceptibility of target assistance techniques for relative ray-casting—our results provide designers with clear guidelines about what methods to use, how to configure the techniques, and what effects can be expected from their use.Ye

    Motion-Based Video Games for Older Adults in Long-Term Care

    Get PDF
    Older adults in residential care often lead sedentary lifestyles despite physical and cognitive activities being crucial for their well-being. Care facilities face the challenge of encouraging their residents to participate in leisure activities, but as the impact of age-related changes grows, few activities remain accessible. Video games in general – and motion-based games in particular – hold the promise of providing mental, physical and social stimulation for older adults. However, the accessibility of commercially available games for older adults is not considered during the development process. Therefore, many older adults are unable to obtain any of the benefits. In my dissertation, this issue is addressed through the development of motion-based game controls that specifically address the needs of older adults. The first part of this thesis lays the foundation by providing an overview of motion-based game interaction for older adults. The second part demonstrates the general feasibility of motion-based game controls for older adults, develops full-body motion-based and wheelchair-based game controls, and provides guidelines for accessible motion-based game interaction for institutionalized older adults. The third part of this thesis builds on these results and presents two case studies. Motion-based controls are applied and further evaluated in game design projects addressing the special needs of older adults in long-term care, with the first case study focusing on long-term player engagement and the role of volunteers in care homes, and the second case study focusing on connecting older adults and caregivers through play. The results of this dissertation show that motion-based game controls can be designed to be accessible to institutionalized older adults. My work also shows that older adults enjoy engaging with motion-based games, and that such games have the potential of positively influencing them by providing a physically and mentally stimulating leisure activity. Furthermore, results from the case studies reveal the benefits and limitations of computer games in long-term care. Fostering inclusive efforts in game design and ensuring that motion-based video games are accessible to broad audiences is an important step toward allowing all players to obtain the full benefits of games, thereby contributing to the quality of life of diverse audiences

    Social Feedback: Social Learning from Interaction History to Support Information Seeking on the Web

    Get PDF
    Information seeking on the Web has become a central part of many daily activities. Even though information seeking is extremely common, there are many times when these tasks are unsuccessful, because the information found is less than ideal or the task could have been completed more efficiently. In unsuccessful information-seeking tasks, there are often other people who have knowledge or experience that could help improve task success. However, information seekers do not typically look for help from others, because tasks can often be completed alone (even if inefficiently). One of the problems is that web tools provide people with few opportunities to learn from one another’s experiences in ways that would allow them to improve their success. This dissertation presents the idea of social feedback. Social feedback is based on the theory of social learning, which describes how people learn from observing others. In social feedback, observational learning is enabled through the mechanism of interaction history – the traces of activity people create as they interact with the Web. Social feedback systems collect and display interaction history to allow information seekers to learn how to complete their tasks more successfully by observing how other people have behaved in similar situations. The dissertation outlines the design of two social-feedback systems, and describes two studies that demonstrate the real world applicability and feasibility of the idea. The first system supports global learning, by allowing people to learn new search skills and techniques that improve information seeking success in many different tasks. The second system supports local learning, in which people learn how to accomplish specific tasks more effectively and more efficiently. Two further studies are conducted to explore potential real-world challenges to the successful deployment of social feedback systems, such as the privacy concerns associated with the collection and sharing of interaction history. These studies show that social feedback systems can be deployed successfully for supporting real world information seeking tasks. Overall, this research shows that social feedback is a valuable new idea for the social use of information systems, an idea that allows people to learn from one another’s experiences and improve their success in many common real-world tasks
    corecore