10,871 research outputs found

    Conformal Mapping Design Tools for Coaxial Couplers with Complex Cross Section

    Get PDF
    Numerical conformal mapping is exploited as a simple, accurate, and efficient tool for the analysis and design of coaxial waveguides and couplers of complex cross section. An implementation based on the Schwarz-Christoffel Toolbox, a public-domain MATLAB package, is applied to slotted coaxial cables and to symmetrical coaxial couplers, with circular or polygonal inner conductors and external shields. The effect of metallic diaphragms of arbitrary thickness, partially separating the inner conductors, is also easily taken into account. The proposed technique is validated against the results of the finite-element method, showing excellent agreement at a fraction of the computational cost, and is also extended to the case of nonsymmetrical couplers, providing the designer with important additional degrees of freedom

    Broadband Butler Matrices with the Use of High-Pass LC Sections as Left-Handed Transmission Lines

    Get PDF
    An application of left-handed transmission line sections in Butler matrices has been investigated. It has been shown, for the first time, that the utilization of both left-handed and right-handed transmission lines allows for broadband differential phase shifters’ realization, required in the Butler matrices. A complete theoretical analysis is given, for Butler matrices incorporating ideal transmission lines of both right- and left handed types and expressions for the achievable bandwidth and differential phase deviation are derived. The presented idea has been verified by the design of a 4 x 4 Butler matrix operating in a frequency range of 2.5 – 3.5 GHz. As an artificial left-handed transmission line, an equivalent high-pass LC circuit realized in a quasi-lumped element technique, has been considered, and the resulting phase shift of such a circuit is given analytically. The obtained measurement results fully confirm the validity of the proposed idea of broadband Butler matrices’ realization

    Design of Dual-Band Two-Branch-Line Couplers with Arbitrary Coupling Coefficients in Bands

    Get PDF
    A new approach to design dual-band two-branch couplers with arbitrary coupling coefficients at two operating frequency bands is proposed in this article. The method is based on the usage of equivalent subcircuits input reactances of the even-mode and odd-mode excitations. The exact design formulas for three options of the dual-band coupler with different location and number of stubs are received. These formulas permit to obtain the different variants for each structure in order to select the physically realizable solution and can be used in broad range of frequency ratio and power division ratio. For verification, three different dual-band couplers, which are operating at 2.4/3.9 GHz with different coupling coefficients (one with 3/6 dB, and 10/3 dB two others) are designed, simulated, fabricated and tested. The measured results are in good agreement with the simulated ones

    Backscattering in silicon microring resonators: a quantitative analysis

    Get PDF
    Silicon microring resonators very often exhibit resonance splitting due to backscattering. This effect is hard to quantitatively and predicatively model. This paper presents a behavioral circuit model for microrings that quantitatively explains the wide variations in resonance splitting observed in experiments. The model is based on an in-depth analysis of the contributions to backscattering by both the waveguides and couplers. Backscattering transforms unidirectional microrings into bidirectional circuits by coupling the clockwise and counterclockwise circulating modes. In high-Q microrings, visible resonance splitting will be induced, but, due to the stochastic nature of backscattering, this splitting is different for each resonance. Our model, based on temporal coupled mode theory, and the associated fitting method, are both accurate and robust, and can also explain asymmetrically split resonances. The cause of asymmetric resonance splitting is identified as the backcoupling in the couplers. This is experimentally confirmed and its dependency on gap and coupling length is further analyzed. Moreover, the wide variation in resonance splitting of one spectrum is analyzed and successfully explained by our circuit model that incorporates most linear parasitic effects in the microring. This analysis uncovers multi-cavity interference within the microring as an important source of this variation

    Mountain-Shaped Coupler for Ultra Wideband Applications

    Get PDF
    This paper demonstrates a novel mountain-shaped design for a compact 3-dB coupler operating at ultra-wideband (UWB) frequencies from 3.1GHz to 10.6 GHz. The proposed design was accomplished using multilayer technology in which the structure is formed by three layers of conductors interleaved by a layer of substrate between each conductor layer. Simulation was carried out using CST Microwave Studio; the result was then compared with results from rectangular and star-shaped couplers that implemented the same technique. The results obtained show that the proposed new coupler has better performance compared to both rectangular and star-shaped coupler designs in terms of return loss, isolation, and phase difference. The coupler was fabricated and measured; the measurement results satisfactorily agree with the simulation results

    Power coupling

    Full text link
    Power coupling is the subject of a huge amount of literature and material since for each particular RF structure it is necessary to design a coupler that satisfies some requirements, and several approaches are in principle possible. The choice of one coupler with respect to another depends on the particular RF design expertise. Nevertheless some 'design criteria' can be adopted and the scope of this paper is to give an overview of the basic concepts in power coupler design and techniques. We illustrate both the cases of normal-conducting and superconducting structures as well as the cases of standing-wave and travelling-wave structures. Problems related to field distortion induced by couplers, pulsed heating, and multipacting are also addressed. Finally a couple of design techniques using electromagnetic codes are illustrated. The paper brings together pictures, data, and information from several works reported in the references and I would like to thank all the authors of the papers.Comment: 23 pages, contribution to the CAS - CERN Accelerator School: Specialised Course on RF for Accelerators; 8 - 17 Jun 2010, Ebeltoft, Denmar

    Interleavers

    Get PDF
    The chapter describes principles, analysis, design, properties, and implementations of optical frequency (or wavelength) interleavers. The emphasis is on finite impulse response devices based on cascaded Mach-Zehnder-type filter elements with carefully designed coupling ratios, the so-called resonant couplers. Another important class that is discussed is the infinite impulse response type, based on e.g. Fabry-Perot, Gires-Tournois, or ring resonators
    corecore