24 research outputs found

    Towards optical beamforming systems on-chip for millimeter wave wireless communications

    Get PDF

    Towards optical beamforming systems on-chip for millimeter wave wireless communications

    Get PDF

    MICROWAVE FILTERS FOR NEXT GENERATION RADIO FREQUENCY TRANSCEIVERS

    Get PDF
    Increased data rates in wireless communications enforce unprecedented performance metrics on the front-end filters to operate in crowded spectral bands. These requirements include strong selectivity, low insertion loss, and good out-of-band (OOB) rejection in addition to the applicability in complementary metal oxide semiconductor (CMOS) integrated circuit layouts. The acoustic wave (AW) resonator based filter design technology has gained a very important role in the on-chip filter design techniques due to chip-scale physical resonator sizes and the ability of achieving high quality factor values at microwave frequencies. However, conventional synthesis methods used in the design of AW resonator based microwave filters suffer from limited achievable fractional bandwidth (FBW) and weak OOB rejection. The origin of these issues is the limitations on increasing the electromechanical coupling coefficient (kt2) of the resonators, which is an intrinsic property of the piezoelectric material in its design. This dissertation proposes a new class of hybrid acoustic-electromagnetic (Hybrid-ACEM) filters to overcome both of the aforementioned limitations of AW resonator-based filters. In other words, the main goal of this new topology is to maximize the ratio between the achievable FBW and the required kt2. This is achieved by employing one or two electromagnetic (EM) resonators that are placed at purposefully selected stages within the design. In addition, cross-coupling mechanisms are systematically used to reduce the required electromechanical coupling coefficient in certain filter orders. Altogether, the proposed method can achieve much larger FBW values and stronger OOB rejection compared to the conventionally synthesized ladder acoustic wave filters. The effect of finite quality factor of the EM resonators is analyzed. A new algorithm to convert extracted-pole sections to Butterworth-Van-Dyke (BVD) model for large FBW values is also presented. It has been shown in the simulations that FBW-to-kt2 ratios of four or above is achievable with this method. As a proof-of-concept, a sixth-order hybrid canonical prototype with a center frequency of 2.67 GHz and 11.2% FBW is designed and fabricated. The acoustic wave resonators used in the fabrication have kt2 values of 3.5%. The fabricated prototype proves the validity of the proposed method for achieving FBW values of 30% with required kt2 values of 7.5%, which is available with the common aluminum nitride (AlN) based bulk acoustic wave resonator technologies of today. The developed technique opens a new pathway to reduce the limitations of integrating microwave filters for future fully on-chip microwave transceivers

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    corecore