37 research outputs found

    Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-antenna Dense Small Cell Networks

    Get PDF
    This paper studies the performance of cache-enabled dense small cell networks consisting of multi-antenna sub-6 GHz and millimeter-wave base stations. Different from the existing works which only consider a single antenna at each base station, the optimal content placement is unknown when the base stations have multiple antennas. We first derive the successful content delivery probability by accounting for the key channel features at sub-6 GHz and mmWave frequencies. The maximization of the successful content delivery probability is a challenging problem. To tackle it, we first propose a constrained cross-entropy algorithm which achieves the near-optimal solution with moderate complexity. We then develop another simple yet effective heuristic probabilistic content placement scheme, termed two-stair algorithm, which strikes a balance between caching the most popular contents and achieving content diversity. Numerical results demonstrate the superior performance of the constrained cross-entropy method and that the two-stair algorithm yields significantly better performance than only caching the most popular contents. The comparisons between the sub-6 GHz and mmWave systems reveal an interesting tradeoff between caching capacity and density for the mmWave system to achieve similar performance as the sub-6 GHz system.Comment: 14 pages; Accepted to appear in IEEE Transactions on Wireless Communication

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks

    Get PDF
    This paper studies the performance of cacheenabled dense small cell networks consisting of multi-antenna sub-6 GHz and millimeter-wave (mm-wave) base stations. Different from the existing works which only consider a single antenna at each base station, the optimal content placement is unknown when the base stations have multiple antennas. We first derive the successful content delivery probability by accounting for the key channel features at sub-6 GHz and mm-wave frequencies. The maximization of the successful content delivery probability is a challenging problem. To tackle it, we first propose a constrained cross-entropy algorithm which achieves the near-optimal solution with moderate complexity. We then develop another simple yet effective heuristic probabilistic content placement scheme, termed two-stair algorithm, which strikes a balance between caching the most popular contents and achieving content diversity. Numerical results demonstrate the superior performance of the constrained cross-entropy method and that the two-stair algorithm yields significantly better performance than only caching the most popular contents. The comparisons between the sub-6 GHz and mm-wave systems reveal an interesting tradeoff between caching capacity and density for the mm-wave system to achieve similar performance as the sub-6 GHz system

    Ultra-Dense Mobile Networks: Optimal Design and Communications Strategies

    Get PDF
    This thesis conducts an extensive analysis within the mobile telecommunications sub-field of the ultra-dense mobile networks, in which a massive deployment of network’s pieces of equipment is assumed. Future cache-enabled mobile networks are expected to meet most of the generated content demands directly at the edge, where each node has the availability to proactively store a set of contents in a local memory. This thesis makes several important contributions. The research being presented in this thesis proposes new analytical expressions to modeling the performance associated to the network’s edge. Base-stations’ idling technologies are also investigated to temporarily turn off some network nodes, saving energy and, in some circumstances, improving the overall performance by contributing less interference at the network’s edge. On the other hand, making use of fewer base-stations however reduces the amount of available resources at the network’s edge. A trade-off is investigated, which balances among interference saturation and available resources to increase the average user’s quality of experience. In this work, we treat the edge node density as a variable of the problem. This greatly increases the difficulty of obtaining analytical expressions, but also offers a direct access for optimizing the users’ average performance and network’s energy consumptions. An energy-focused performance metric is subsequently proposed, with the intention to highlight an interesting duality within the same network’s tier, which can transition from a better efficient to a more performing state, according to the energy expenses from the operators. Nonetheless, under an ultra-dense scenario, line-of-sight wireless links between the user and the nodes become more likely. The introduction of a main component of the multi-path propagated copies of a signal involves analytical complications. A feasible approximation is proposed and validated through a set of computer simulations. The scalability of the proposed technique allows to generalise existing results in the literature
    corecore