169,324 research outputs found

    COMIC: Towards A Compact Image Captioning Model with Attention

    Full text link
    Recent works in image captioning have shown very promising raw performance. However, we realize that most of these encoder-decoder style networks with attention do not scale naturally to large vocabulary size, making them difficult to be deployed on embedded system with limited hardware resources. This is because the size of word and output embedding matrices grow proportionally with the size of vocabulary, adversely affecting the compactness of these networks. To address this limitation, this paper introduces a brand new idea in the domain of image captioning. That is, we tackle the problem of compactness of image captioning models which is hitherto unexplored. We showed that, our proposed model, named COMIC for COMpact Image Captioning, achieves comparable results in five common evaluation metrics with state-of-the-art approaches on both MS-COCO and InstaPIC-1.1M datasets despite having an embedding vocabulary size that is 39x - 99x smaller. The source code and models are available at: https://github.com/jiahuei/COMIC-Compact-Image-Captioning-with-AttentionComment: Added source code link and new results in Table

    Sparse Radial Sampling LBP for Writer Identification

    Full text link
    In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.Comment: Submitted to the 13th International Conference on Document Analysis and Recognition (ICDAR 2015

    Mathematical Foundations for a Compositional Distributional Model of Meaning

    Full text link
    We propose a mathematical framework for a unification of the distributional theory of meaning in terms of vector space models, and a compositional theory for grammatical types, for which we rely on the algebra of Pregroups, introduced by Lambek. This mathematical framework enables us to compute the meaning of a well-typed sentence from the meanings of its constituents. Concretely, the type reductions of Pregroups are `lifted' to morphisms in a category, a procedure that transforms meanings of constituents into a meaning of the (well-typed) whole. Importantly, meanings of whole sentences live in a single space, independent of the grammatical structure of the sentence. Hence the inner-product can be used to compare meanings of arbitrary sentences, as it is for comparing the meanings of words in the distributional model. The mathematical structure we employ admits a purely diagrammatic calculus which exposes how the information flows between the words in a sentence in order to make up the meaning of the whole sentence. A variation of our `categorical model' which involves constraining the scalars of the vector spaces to the semiring of Booleans results in a Montague-style Boolean-valued semantics.Comment: to appea
    corecore