12,633 research outputs found

    A simple and efficient face detection algorithm for video database applications

    Get PDF
    The objective of this work is to provide a simple and yet efficient tool to detect human faces in video sequences. This information can be very useful for many applications such as video indexing and video browsing. In particular the paper focuses on the significant improvements made to our face detection algorithm presented by Albiol, Bouman and Delp (see IEEE Int. Conference on Image Processing, Kobe, Japan, 1999). Specifically, a novel approach to retrieve skin-like homogeneous regions is presented, which is later used to retrieve face images. Good results have been obtained for a large variety of video sequences.Peer ReviewedPostprint (published version

    Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling

    Get PDF
    We frame the task of predicting a semantic labeling as a sparse reconstruction procedure that applies a target-specific learned transfer function to a generic deep sparse code representation of an image. This strategy partitions training into two distinct stages. First, in an unsupervised manner, we learn a set of generic dictionaries optimized for sparse coding of image patches. We train a multilayer representation via recursive sparse dictionary learning on pooled codes output by earlier layers. Second, we encode all training images with the generic dictionaries and learn a transfer function that optimizes reconstruction of patches extracted from annotated ground-truth given the sparse codes of their corresponding image patches. At test time, we encode a novel image using the generic dictionaries and then reconstruct using the transfer function. The output reconstruction is a semantic labeling of the test image. Applying this strategy to the task of contour detection, we demonstrate performance competitive with state-of-the-art systems. Unlike almost all prior work, our approach obviates the need for any form of hand-designed features or filters. To illustrate general applicability, we also show initial results on semantic part labeling of human faces. The effectiveness of our approach opens new avenues for research on deep sparse representations. Our classifiers utilize this representation in a novel manner. Rather than acting on nodes in the deepest layer, they attach to nodes along a slice through multiple layers of the network in order to make predictions about local patches. Our flexible combination of a generatively learned sparse representation with discriminatively trained transfer classifiers extends the notion of sparse reconstruction to encompass arbitrary semantic labeling tasks.Comment: to appear in Asian Conference on Computer Vision (ACCV), 201

    Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos

    Full text link
    Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.Comment: Submitted for publicatio

    Automated Discrimination of Pathological Regions in Tissue Images: Unsupervised Clustering vs Supervised SVM Classification

    Get PDF
    Recognizing and isolating cancerous cells from non pathological tissue areas (e.g. connective stroma) is crucial for fast and objective immunohistochemical analysis of tissue images. This operation allows the further application of fully-automated techniques for quantitative evaluation of protein activity, since it avoids the necessity of a preventive manual selection of the representative pathological areas in the image, as well as of taking pictures only in the pure-cancerous portions of the tissue. In this paper we present a fully-automated method based on unsupervised clustering that performs tissue segmentations highly comparable with those provided by a skilled operator, achieving on average an accuracy of 90%. Experimental results on a heterogeneous dataset of immunohistochemical lung cancer tissue images demonstrate that our proposed unsupervised approach overcomes the accuracy of a theoretically superior supervised method such as Support Vector Machine (SVM) by 8%
    • …
    corecore