6 research outputs found

    Body of Knowledge for Graphics Processing Units (GPUs)

    Get PDF
    Graphics Processing Units (GPU) have emerged as a proven technology that enables high performance computing and parallel processing in a small form factor. GPUs enhance the traditional computer paradigm by permitting acceleration of complex mathematics and providing the capability to perform weighted calculations, such as those in artificial intelligence systems. Despite the performance enhancements provided by this type of microprocessor, there exist tradeoffs in regards to reliability and radiation susceptibility, which may impact mission success. This report provides an insight into GPU architecture and its potential applications in space and other similar markets. It also discusses reliability, qualification, and radiation considerations for testing GPUs

    Computing with Spintronics: Circuits and architectures

    Get PDF
    This thesis makes the following contributions towards the design of computing platforms with spintronic devices. 1) It explores the use of spintronic memories in the design of a domain-specific processor for an emerging class of data-intensive applications, namely recognition, mining and synthesis (RMS). Two different spintronic memory technologies — Domain Wall Memory (DWM) and STT-MRAM — are utilized to realize the different levels in the memory hierarchy of the domain-specific processor, based on their respective access characteristics. Architectural tradeoffs created by the use of spintronic memories are analyzed. The proposed design achieves 1.5X-4X improvements in energy-delay product compared to a CMOS baseline. 2) It describes the first attempt to use DWM in the cache hierarchy of general-purpose processors. DWM promises unparalleled density by packing several bits of data into each bit-cell. TapeCache, the proposed DWM-based cache architecture, utilizes suitable circuit and architectural optimizations to address two key challenges (i) the high energy and latency requirement of write operations and (ii) the need for shift operations to access the data stored in each DWM bit-cell. At the circuit level, DWM bit-cells that are tailored to the distinct design requirements of different levels in the cache hierarchy are proposed. At the architecture level, TapeCache proposes suitable cache organization and management policies to alleviate the performance impact of shift operations required to access data stored in DWM bit-cells. TapeCache achieves more than 7X improvements in both cache area and energy with virtually identical performance compared to an SRAM-based cache hierarchy. 3) It investigates the design of the on-chip memory hierarchy of general-purpose graphics processing units (GPGPUs)—massively parallel processors that are optimized for data-intensive high-throughput workloads—using DWM. STAG, a high density, energy-efficient Spintronic- Tape Architecture for GPGPU cache hierarchies is described. STAG utilizes different DWM bit-cells to realize different memory arrays in the GPGPU cache hierarchy. To address the challenge of high access latencies due to shifts, STAG predicts upcoming cache accesses by leveraging unique characteristics of GPGPU architectures and workloads, and prefetches data that are both likely to be accessed and require large numbers of shift operations. STAG achieves 3.3X energy reduction and 12.1% performance improvement over CMOS SRAM under iso-area conditions. 4) While the potential of spintronic devices for memories is widely recognized, their utility in realizing logic is much less clear. The thesis presents Spintastic, a new paradigm that utilizes Stochastic Computing (SC) to realize spintronic logic. In SC, data is encoded in the form of pseudo-random bitstreams, such that the probability of a \u271\u27 in a bitstream corresponds to the numerical value that it represents. SC can enable compact, low-complexity logic implementations of various arithmetic functions. Spintastic establishes the synergy between stochastic computing and spin-based logic by demonstrating that they mutually alleviate each other\u27s limitations. On the one hand, various building blocks of SC, which incur significant overheads in CMOS implementations, can be efficiently realized by exploiting the physical characteristics of spin devices. On the other hand, the reduced logic complexity and low logic depth of SC circuits alleviates the shortcomings of spintronic logic. Based on this insight, the design of spin-based stochastic arithmetic circuits, bitstream generators, bitstream permuters and stochastic-to-binary converter circuits are presented. Spintastic achieves 7.1X energy reduction over CMOS implementations for a wide range of benchmarks from the image processing, signal processing, and RMS application domains. 5) In order to evaluate the proposed spintronic designs, the thesis describes various device-to-architecture modeling frameworks. Starting with devices models that are calibrated to measurements, the characteristics of spintronic devices are successively abstracted into circuit-level and architectural models, which are incorporated into suitable simulation frameworks. (Abstract shortened by UMI.

    New FPGA design tools and architectures

    Get PDF

    Methods for Robust and Energy-Efficient Microprocessor Architectures

    Get PDF
    Σήμερα, η εξέλιξη της τεχνολογίας επιτρέπει τη βελτίωση τριών βασικών στοιχείων της σχεδίασης των επεξεργαστών: αυξημένες επιδόσεις, χαμηλότερη κατανάλωση ισχύος και χαμηλότερο κόστος παραγωγής του τσιπ, ενώ οι σχεδιαστές επεξεργαστών έχουν επικεντρωθεί στην παραγωγή επεξεργαστών με περισσότερες λειτουργίες σε χαμηλότερο κόστος. Οι σημερινοί επεξεργαστές είναι πολύ ταχύτεροι και διαθέτουν εξελιγμένες λειτουργικές μονάδες συγκριτικά με τους προκατόχους τους, ωστόσο, καταναλώνουν αρκετά μεγάλη ενέργεια. Τα ποσά ηλεκτρικής ισχύος που καταναλώνονται, και η επακόλουθη έκλυση θερμότητας, αυξάνονται παρά τη μείωση του μεγέθους των τρανζίστορ. Αναπτύσσοντας όλο και πιο εξελιγμένους μηχανισμούς και λειτουργικές μονάδες για την αύξηση της απόδοσης και βελτίωση της ενέργειας, σε συνδυασμό με τη μείωση του μεγέθους των τρανζίστορ, οι επεξεργαστές έχουν γίνει εξαιρετικά πολύπλοκα συστήματα, καθιστώντας τη διαδικασία της επικύρωσής τους σημαντική πρόκληση για τη βιομηχανία ολοκληρωμένων κυκλωμάτων. Συνεπώς, οι κατασκευαστές επεξεργαστών αφιερώνουν επιπλέον χρόνο, προϋπολογισμό και χώρο στο τσιπ για να διασφαλίσουν ότι οι επεξεργαστές θα λειτουργούν σωστά κατά τη διάθεσή τους στη αγορά. Για τους λόγους αυτούς, η εργασία αυτή παρουσιάζει νέες μεθόδους για την επιτάχυνση και τη βελτίωση της φάσης της επικύρωσης, καθώς και για τη βελτίωση της ενεργειακής απόδοσης των σύγχρονων επεξεργαστών. Στο πρώτο μέρος της διατριβής προτείνονται δύο διαφορετικές μέθοδοι για την επικύρωση του επεξεργαστή, οι οποίες συμβάλλουν στην επιτάχυνση αυτής της διαδικασίας και στην αποκάλυψη σπάνιων σφαλμάτων στους μηχανισμούς μετάφρασης διευθύνσεων των σύγχρονων επεξεργαστών. Και οι δύο μέθοδοι καθιστούν ευκολότερη την ανίχνευση και τη διάγνωση σφαλμάτων, και επιταχύνουν την ανίχνευση του σφάλματος κατά τη φάση της επικύρωσης. Στο δεύτερο μέρος της διατριβής παρουσιάζεται μια λεπτομερής μελέτη χαρακτηρισμού των περιθωρίων τάσης σε επίπεδο συστήματος σε δύο σύγχρονους ARMv8 επεξεργαστές. Η μελέτη του χαρακτηρισμού προσδιορίζει τα αυξημένα περιθώρια τάσης που έχουν προκαθοριστεί κατά τη διάρκεια κατασκευής του κάθε μεμονωμένου πυρήνα του επεξεργαστή και αναλύει τυχόν απρόβλεπτες συμπεριφορές που μπορεί να προκύψουν σε συνθήκες μειωμένης τάσης. Για την μελέτη και καταγραφή της συμπεριφοράς του συστήματος υπό συνθήκες μειωμένης τάσης, παρουσιάζεται επίσης σε αυτή τη διατριβή μια απλή και ενοποιημένη συνάρτηση: η συνάρτηση πυκνότητας-σοβαρότητας. Στη συνέχεια, παρουσιάζεται αναλυτικά η ανάπτυξη ειδικά σχεδιασμένων προγραμμάτων (micro-viruses) τα οποία υποβάλουν της θεμελιώδεις δομές του επεξεργαστή σε μεγάλο φορτίο εργασίας. Αυτά τα προγράμματα στοχεύουν στην γρήγορη αναγνώριση των ασφαλών περιθωρίων τάσης. Τέλος, πραγματοποιείται ο χαρακτηρισμός των περιθωρίων τάσης σε εκτελέσεις πολλαπλών πυρήνων, καθώς επίσης και σε διαφορετικές συχνότητες, και προτείνεται ένα πρόγραμμα το οποίο εκμεταλλεύεται όλες τις διαφορετικές πτυχές του προβλήματος της κατανάλωσης ενέργειας και παρέχει μεγάλη εξοικονόμηση ενέργειας διατηρώντας παράλληλα υψηλά επίπεδα απόδοσης. Αυτή η μελέτη έχει ως στόχο τον εντοπισμό και την ανάλυση της σχέσης μεταξύ ενέργειας και απόδοσης σε διαφορετικούς συνδυασμούς τάσης και συχνότητας, καθώς και σε διαφορετικό αριθμό νημάτων/διεργασιών που εκτελούνται στο σύστημα, αλλά και κατανομής των προγραμμάτων στους διαθέσιμους πυρήνες.Technology scaling has enabled improvements in the three major design optimization objectives: increased performance, lower power consumption, and lower die cost, while system design has focused on bringing more functionality into products at lower cost. While today's microprocessors, are much faster and much more versatile than their predecessors, they also consume much power. As operating frequency and integration density increase, the total chip power dissipation increases. This is evident from the fact that due to the demand for increased functionality on a single chip, more and more transistors are being packed on a single die and hence, the switching frequency increases in every technology generation. However, by developing aggressive and sophisticated mechanisms to boost performance and to enhance the energy efficiency in conjunction with the decrease of the size of transistors, microprocessors have become extremely complex systems, making the microprocessor verification and manufacturing testing a major challenge for the semiconductor industry. Manufacturers, therefore, choose to spend extra effort, time, budget and chip area to ensure that the delivered products are operating correctly. To meet high-dependability requirements, manufacturers apply a sequence of verification tasks throughout the entire life-cycle of the microprocessor to ensure the correct functionality of the microprocessor chips from the various types of errors that may occur after the products are released to the market. To this end, this work presents novel methods for ensuring the correctness of the microprocessor during the post-silicon validation phase and for improving the energy efficiency requirements of modern microprocessors. These methods can be applied during the prototyping phase of the microprocessors or after their release to the market. More specifically, in the first part of the thesis, we present and describe two different ISA-independent software-based post-silicon validation methods, which contribute to formalization and modeling as well as the acceleration of the post-silicon validation process and expose difficult-to-find bugs in the address translation mechanisms (ATM) of modern microprocessors. Both methods improve the detection and diagnosis of a hardware design bug in the ATM structures and significantly accelerate the bug detection during the post-silicon validation phase. In the second part of the thesis we present a detailed system-level voltage scaling characterization study for two state-of-the-art ARMv8-based multicore CPUs. We present an extensive characterization study which identifies the pessimistic voltage guardbands (the increased voltage margins set by the manufacturer) of each individual microprocessor core and analyze any abnormal behavior that may occur in off-nominal voltage conditions. Towards the formalization of the any abnormal behavior we also present a simple consolidated function; the Severity function, which aggregates the effects of reduced voltage operation. We then introduce the development of dedicated programs (diagnostic micro-viruses) that aim to accelerate the time-consuming voltage margins characterization studies by stressing the fundamental hardware components. Finally, we present a comprehensive exploration of how two server-grade systems behave in different frequency and core allocation configurations beyond nominal voltage operation in multicore executions. This analysis aims (1) to identify the best performance per watt operation points, (2) to reveal how and why the different core allocation options affect the energy consumption, and (3) to enhance the default Linux scheduler to take task allocation decisions for balanced performance and energy efficiency
    corecore