1,821 research outputs found

    Two-phase Dual COPOD Method for Anomaly Detection in Industrial Control System

    Full text link
    Critical infrastructures like water treatment facilities and power plants depend on industrial control systems (ICS) for monitoring and control, making them vulnerable to cyber attacks and system malfunctions. Traditional ICS anomaly detection methods lack transparency and interpretability, which make it difficult for practitioners to understand and trust the results. This paper proposes a two-phase dual Copula-based Outlier Detection (COPOD) method that addresses these challenges. The first phase removes unwanted outliers using an empirical cumulative distribution algorithm, and the second phase develops two parallel COPOD models based on the output data of phase 1. The method is based on empirical distribution functions, parameter-free, and provides interpretability by quantifying each feature's contribution to an anomaly. The method is also computationally and memory-efficient, suitable for low- and high-dimensional datasets. Experimental results demonstrate superior performance in terms of F1-score and recall on three open-source ICS datasets, enabling real-time ICS anomaly detection.Comment: 11 pages, 9 figures, journal articl

    Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via diffusion-based channel selection

    Full text link
    There is a need for affordable, widely deployable maternal-fetal ECG monitors to improve maternal and fetal health during pregnancy and delivery. Based on the diffusion-based channel selection, here we present the mathematical formalism and clinical validation of an algorithm capable of accurate separation of maternal and fetal ECG from a two channel signal acquired over maternal abdomen

    Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly Detection?

    Full text link
    Anomaly detection in time series is a complex task that has been widely studied. In recent years, the ability of unsupervised anomaly detection algorithms has received much attention. This trend has led researchers to compare only learning-based methods in their articles, abandoning some more conventional approaches. As a result, the community in this field has been encouraged to propose increasingly complex learning-based models mainly based on deep neural networks. To our knowledge, there are no comparative studies between conventional, machine learning-based and, deep neural network methods for the detection of anomalies in multivariate time series. In this work, we study the anomaly detection performance of sixteen conventional, machine learning-based and, deep neural network approaches on five real-world open datasets. By analyzing and comparing the performance of each of the sixteen methods, we show that no family of methods outperforms the others. Therefore, we encourage the community to reincorporate the three categories of methods in the anomaly detection in multivariate time series benchmarks

    A Survey on Global LiDAR Localization

    Full text link
    Knowledge about the own pose is key for all mobile robot applications. Thus pose estimation is part of the core functionalities of mobile robots. In the last two decades, LiDAR scanners have become a standard sensor for robot localization and mapping. This article surveys recent progress and advances in LiDAR-based global localization. We start with the problem formulation and explore the application scope. We then present the methodology review covering various global localization topics, such as maps, descriptor extraction, and consistency checks. The contents are organized under three themes. The first is the combination of global place retrieval and local pose estimation. Then the second theme is upgrading single-shot measurement to sequential ones for sequential global localization. The third theme is extending single-robot global localization to cross-robot localization on multi-robot systems. We end this survey with a discussion of open challenges and promising directions on global lidar localization

    Semi-supervised multiscale dual-encoding method for faulty traffic data detection

    Full text link
    Inspired by the recent success of deep learning in multiscale information encoding, we introduce a variational autoencoder (VAE) based semi-supervised method for detection of faulty traffic data, which is cast as a classification problem. Continuous wavelet transform (CWT) is applied to the time series of traffic volume data to obtain rich features embodied in time-frequency representation, followed by a twin of VAE models to separately encode normal data and faulty data. The resulting multiscale dual encodings are concatenated and fed to an attention-based classifier, consisting of a self-attention module and a multilayer perceptron. For comparison, the proposed architecture is evaluated against five different encoding schemes, including (1) VAE with only normal data encoding, (2) VAE with only faulty data encoding, (3) VAE with both normal and faulty data encodings, but without attention module in the classifier, (4) siamese encoding, and (5) cross-vision transformer (CViT) encoding. The first four encoding schemes adopted the same convolutional neural network (CNN) architecture while the fifth encoding scheme follows the transformer architecture of CViT. Our experiments show that the proposed architecture with the dual encoding scheme, coupled with attention module, outperforms other encoding schemes and results in classification accuracy of 96.4%, precision of 95.5%, and recall of 97.7%.Comment: 16 pages, 8 figure
    • …
    corecore