5 research outputs found

    An Optimization Framework to Improve 4D-Var Data Assimilation System Performance

    Full text link
    This paper develops a computational framework for optimizing the parameters of data assimilation systems in order to improve their performance. The approach formulates a continuous meta-optimization problem for parameters; the meta-optimization is constrained by the original data assimilation problem. The numerical solution process employs adjoint models and iterative solvers. The proposed framework is applied to optimize observation values, data weighting coefficients, and the location of sensors for a test problem. The ability to optimize a distributed measurement network is crucial for cutting down operating costs and detecting malfunctions

    A Time-parallel Approach to Strong-constraint Four-dimensional Variational Data Assimilation

    Full text link
    A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows to parallelize cost function and gradient computations. Solution continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems with Lorenz-96 and the shallow water models.Comment: 22 Page

    Robust data assimilation using L1L_1 and Huber norms

    Full text link
    Data assimilation is the process to fuse information from priors, observations of nature, and numerical models, in order to obtain best estimates of the parameters or state of a physical system of interest. Presence of large errors in some observational data, e.g., data collected from a faulty instrument, negatively affect the quality of the overall assimilation results. This work develops a systematic framework for robust data assimilation. The new algorithms continue to produce good analyses in the presence of observation outliers. The approach is based on replacing the traditional \L_2 norm formulation of data assimilation problems with formulations based on \L_1 and Huber norms. Numerical experiments using the Lorenz-96 and the shallow water on the sphere models illustrate how the new algorithms outperform traditional data assimilation approaches in the presence of data outliers.Comment: 25 pages, Submitted to SIS

    Numerical Linear Algebra in Data Assimilation

    Full text link
    Data assimilation is a method that combines observations (that is, real world data) of a state of a system with model output for that system in order to improve the estimate of the state of the system and thereby the model output. The model is usually represented by a discretised partial differential equation. The data assimilation problem can be formulated as a large scale Bayesian inverse problem. Based on this interpretation we will derive the most important variational and sequential data assimilation approaches, in particular three-dimensional and four-dimensional variational data assimilation (3D-Var and 4D-Var) and the Kalman filter. We will then consider more advanced methods which are extensions of the Kalman filter and variational data assimilation and pay particular attention to their advantages and disadvantages. The data assimilation problem usually results in a very large optimisation problem and/or a very large linear system to solve (due to inclusion of time and space dimensions). Therefore, the second part of this article aims to review advances and challenges, in particular from the numerical linear algebra perspective, within the various data assimilation approaches.Comment: 31 pages, 2 figure
    corecore