567 research outputs found

    Scalable and Distributed Resource Management Protocols for Cloud and Big Data Clusters

    Get PDF
    Cloud data centers require an operating system to manage resources and satisfy operational requirements and management objectives. The growth of popularity in cloud services causes the appearance of a new spectrum of services with sophisticated workload and resource management requirements. Also, data centers are growing by addition of various type of hardware to accommodate the ever-increasing requests of users. Nowadays a large percentage of cloud resources are executing data-intensive applications which need continuously changing workload fluctuations and specific resource management. To this end, cluster computing frameworks are shifting towards distributed resource management for better scalability and faster decision making. Such systems benefit from the parallelization of control and are resilient to failures. Throughout this thesis we investigate algorithms, protocols and techniques to address these challenges in large-scale data centers. We introduce a distributed resource management framework which consolidates virtual machine to as few servers as possible to reduce the energy consumption of data center and hence decrease the cost of cloud providers. This framework can characterize the workload of virtual machines and hence handle trade-off energy consumption and Service Level Agreement (SLA) of customers efficiently. The algorithm is highly scalable and requires low maintenance cost with dynamic workloads and it tries to minimize virtual machines migration costs. We also introduce a scalable and distributed probe-based scheduling algorithm for Big data analytics frameworks. This algorithm can efficiently address the problem job heterogeneity in workloads that has appeared after increasing the level of parallelism in jobs. The algorithm is massively scalable and can reduce significantly average job completion times in comparison with the-state of-the-art. Finally, we propose a probabilistic fault-tolerance technique as part of the scheduling algorithm

    A survey on cost-effective context-aware distribution of social data streams over energy-efficient data centres

    Get PDF
    Social media have emerged in the last decade as a viable and ubiquitous means of communication. The ease of user content generation within these platforms, e.g. check-in information, multimedia data, etc., along with the proliferation of Global Positioning System (GPS)-enabled, always-connected capture devices lead to data streams of unprecedented amount and a radical change in information sharing. Social data streams raise a variety of practical challenges, including derivation of real-time meaningful insights from effectively gathered social information, as well as a paradigm shift for content distribution with the leverage of contextual data associated with user preferences, geographical characteristics and devices in general. In this article we present a comprehensive survey that outlines the state-of-the-art situation and organizes challenges concerning social media streams and the infrastructure of the data centres supporting the efficient access to data streams in terms of content distribution, data diffusion, data replication, energy efficiency and network infrastructure. We systematize the existing literature and proceed to identify and analyse the main research points and industrial efforts in the area as far as modelling, simulation and performance evaluation are concerned

    Spark deployment and performance evaluation on the MareNostrum supercomputer

    Get PDF
    In this paper we present a framework to enable data-intensive Spark workloads on MareNostrum, a petascale supercomputer designed mainly for compute-intensive applications. As far as we know, this is the first attempt to investigate optimized deployment configurations of Spark on a petascale HPC setup. We detail the design of the framework and present some benchmark data to provide insights into the scalability of the system. We examine the impact of different configurations including parallelism, storage and networking alternatives, and we discuss several aspects in executing Big Data workloads on a computing system that is based on the compute-centric paradigm. Further, we derive conclusions aiming to pave the way towards systematic and optimized methodologies for fine-tuning data-intensive application on large clusters emphasizing on parallelism configurations.Peer ReviewedPostprint (author's final draft

    Auto-tuning Distributed Stream Processing Systems using Reinforcement Learning

    Get PDF
    Fine tuning distributed systems is considered to be a craftsmanship, relying on intuition and experience. This becomes even more challenging when the systems need to react in near real time, as streaming engines have to do to maintain pre-agreed service quality metrics. In this article, we present an automated approach that builds on a combination of supervised and reinforcement learning methods to recommend the most appropriate lever configurations based on previous load. With this, streaming engines can be automatically tuned without requiring a human to determine the right way and proper time to deploy them. This opens the door to new configurations that are not being applied today since the complexity of managing these systems has surpassed the abilities of human experts. We show how reinforcement learning systems can find substantially better configurations in less time than their human counterparts and adapt to changing workloads

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    Resource management of replicated service systems provisioned in the cloud

    Get PDF
    Service providers seek scalable and cost-effective cloud solutions for hosting their applications. Despite significant recent advances facilitating the deployment and management of services on cloud platforms, a number of challenges still remain. Service providers are confronted with time-varying requests for the provided applications, inter- dependencies between different components, performance variability of the procured virtual resources, and cost structures that differ from conventional data centers. Moreover, fulfilling service level agreements, such as the throughput and response time percentiles, becomes of paramount importance for ensuring business advantages.In this thesis, we explore service provisioning in clouds from multiple points of view. The aim is to best provide service replicas in the form of VMs to various service applications, such that their tail throughput and tail response times, as well as resource utilization, meet the service level agreements in the most cost effective manner. In particular, we develop models, algorithms and replication strategies that consider multi-tier composed services provisioned in clouds. We also investigate how a service provider can opportunistically take advantage of observed performance variability in the cloud. Finally, we provide means of guaranteeing tail throughput and response times in the face of performance variability of VMs, using Markov chain modeling and large deviation theory. We employ methods from analytical modeling, event-driven simulations and experiments. Overall, this thesis provides not only a multi-faceted approach to exploring several crucial aspects of hosting services in clouds, i.e., cost, tail throughput, and tail response times, but our proposed resource management strategies are also rigorously validated via trace-driven simulation and extensive experiment
    • …
    corecore