30,019 research outputs found

    Probabilistic Surfel Fusion for Dense LiDAR Mapping

    Full text link
    With the recent development of high-end LiDARs, more and more systems are able to continuously map the environment while moving and producing spatially redundant information. However, none of the previous approaches were able to effectively exploit this redundancy in a dense LiDAR mapping problem. In this paper, we present a new approach for dense LiDAR mapping using probabilistic surfel fusion. The proposed system is capable of reconstructing a high-quality dense surface element (surfel) map from spatially redundant multiple views. This is achieved by a proposed probabilistic surfel fusion along with a geometry considered data association. The proposed surfel data association method considers surface resolution as well as high measurement uncertainty along its beam direction which enables the mapping system to be able to control surface resolution without introducing spatial digitization. The proposed fusion method successfully suppresses the map noise level by considering measurement noise caused by laser beam incident angle and depth distance in a Bayesian filtering framework. Experimental results with simulated and real data for the dense surfel mapping prove the ability of the proposed method to accurately find the canonical form of the environment without further post-processing.Comment: Accepted in Multiview Relationships in 3D Data 2017 (IEEE International Conference on Computer Vision Workshops

    Probabilistic Combination of Noisy Points and Planes for RGB-D Odometry

    Full text link
    This work proposes a visual odometry method that combines points and plane primitives, extracted from a noisy depth camera. Depth measurement uncertainty is modelled and propagated through the extraction of geometric primitives to the frame-to-frame motion estimation, where pose is optimized by weighting the residuals of 3D point and planes matches, according to their uncertainties. Results on an RGB-D dataset show that the combination of points and planes, through the proposed method, is able to perform well in poorly textured environments, where point-based odometry is bound to fail.Comment: Accepted to TAROS 201

    Probabilistic RGB-D Odometry based on Points, Lines and Planes Under Depth Uncertainty

    Full text link
    This work proposes a robust visual odometry method for structured environments that combines point features with line and plane segments, extracted through an RGB-D camera. Noisy depth maps are processed by a probabilistic depth fusion framework based on Mixtures of Gaussians to denoise and derive the depth uncertainty, which is then propagated throughout the visual odometry pipeline. Probabilistic 3D plane and line fitting solutions are used to model the uncertainties of the feature parameters and pose is estimated by combining the three types of primitives based on their uncertainties. Performance evaluation on RGB-D sequences collected in this work and two public RGB-D datasets: TUM and ICL-NUIM show the benefit of using the proposed depth fusion framework and combining the three feature-types, particularly in scenes with low-textured surfaces, dynamic objects and missing depth measurements.Comment: Major update: more results, depth filter released as opensource, 34 page

    Pop-up SLAM: Semantic Monocular Plane SLAM for Low-texture Environments

    Full text link
    Existing simultaneous localization and mapping (SLAM) algorithms are not robust in challenging low-texture environments because there are only few salient features. The resulting sparse or semi-dense map also conveys little information for motion planning. Though some work utilize plane or scene layout for dense map regularization, they require decent state estimation from other sources. In this paper, we propose real-time monocular plane SLAM to demonstrate that scene understanding could improve both state estimation and dense mapping especially in low-texture environments. The plane measurements come from a pop-up 3D plane model applied to each single image. We also combine planes with point based SLAM to improve robustness. On a public TUM dataset, our algorithm generates a dense semantic 3D model with pixel depth error of 6.2 cm while existing SLAM algorithms fail. On a 60 m long dataset with loops, our method creates a much better 3D model with state estimation error of 0.67%.Comment: International Conference on Intelligent Robots and Systems (IROS) 201

    Simultaneous Parameter Calibration, Localization, and Mapping

    Get PDF
    The calibration parameters of a mobile robot play a substantial role in navigation tasks. Often these parameters are subject to variations that depend either on changes in the environment or on the load of the robot. In this paper, we propose an approach to simultaneously estimate a map of the environment, the position of the on-board sensors of the robot, and its kinematic parameters. Our method requires no prior knowledge about the environment and relies only on a rough initial guess of the parameters of the platform. The proposed approach estimates the parameters online and it is able to adapt to non-stationary changes of the configuration. We tested our approach in simulated environments and on a wide range of real-world data using different types of robotic platforms. (C) 2012 Taylor & Francis and The Robotics Society of Japa

    On-Manifold Preintegration for Real-Time Visual-Inertial Odometry

    Get PDF
    Current approaches for visual-inertial odometry (VIO) are able to attain highly accurate state estimation via nonlinear optimization. However, real-time optimization quickly becomes infeasible as the trajectory grows over time, this problem is further emphasized by the fact that inertial measurements come at high rate, hence leading to fast growth of the number of variables in the optimization. In this paper, we address this issue by preintegrating inertial measurements between selected keyframes into single relative motion constraints. Our first contribution is a \emph{preintegration theory} that properly addresses the manifold structure of the rotation group. We formally discuss the generative measurement model as well as the nature of the rotation noise and derive the expression for the \emph{maximum a posteriori} state estimator. Our theoretical development enables the computation of all necessary Jacobians for the optimization and a-posteriori bias correction in analytic form. The second contribution is to show that the preintegrated IMU model can be seamlessly integrated into a visual-inertial pipeline under the unifying framework of factor graphs. This enables the application of incremental-smoothing algorithms and the use of a \emph{structureless} model for visual measurements, which avoids optimizing over the 3D points, further accelerating the computation. We perform an extensive evaluation of our monocular \VIO pipeline on real and simulated datasets. The results confirm that our modelling effort leads to accurate state estimation in real-time, outperforming state-of-the-art approaches.Comment: 20 pages, 24 figures, accepted for publication in IEEE Transactions on Robotics (TRO) 201
    • …
    corecore