24,075 research outputs found

    Learning Multi-item Auctions with (or without) Samples

    Full text link
    We provide algorithms that learn simple auctions whose revenue is approximately optimal in multi-item multi-bidder settings, for a wide range of valuations including unit-demand, additive, constrained additive, XOS, and subadditive. We obtain our learning results in two settings. The first is the commonly studied setting where sample access to the bidders' distributions over valuations is given, for both regular distributions and arbitrary distributions with bounded support. Our algorithms require polynomially many samples in the number of items and bidders. The second is a more general max-min learning setting that we introduce, where we are given "approximate distributions," and we seek to compute an auction whose revenue is approximately optimal simultaneously for all "true distributions" that are close to the given ones. These results are more general in that they imply the sample-based results, and are also applicable in settings where we have no sample access to the underlying distributions but have estimated them indirectly via market research or by observation of previously run, potentially non-truthful auctions. Our results hold for valuation distributions satisfying the standard (and necessary) independence-across-items property. They also generalize and improve upon recent works, which have provided algorithms that learn approximately optimal auctions in more restricted settings with additive, subadditive and unit-demand valuations using sample access to distributions. We generalize these results to the complete unit-demand, additive, and XOS setting, to i.i.d. subadditive bidders, and to the max-min setting. Our results are enabled by new uniform convergence bounds for hypotheses classes under product measures. Our bounds result in exponential savings in sample complexity compared to bounds derived by bounding the VC dimension, and are of independent interest.Comment: Appears in FOCS 201

    airline revenue management

    Get PDF
    With the increasing interest in decision support systems and the continuous advance of computer science, revenue management is a discipline which has received a great deal of interest in recent years. Although revenue management has seen many new applications throughout the years, the main focus of research continues to be the airline industry. Ever since Littlewood (1972) first proposed a solution method for the airline revenue management problem, a variety of solution methods have been introduced. In this paper we will give an overview of the solution methods presented throughout the literature.revenue management;seat inventory control;OR techniques;mathematical programming

    Descending Price Optimally Coordinates Search

    Full text link
    Investigating potential purchases is often a substantial investment under uncertainty. Standard market designs, such as simultaneous or English auctions, compound this with uncertainty about the price a bidder will have to pay in order to win. As a result they tend to confuse the process of search both by leading to wasteful information acquisition on goods that have already found a good purchaser and by discouraging needed investigations of objects, potentially eliminating all gains from trade. In contrast, we show that the Dutch auction preserves all of its properties from a standard setting without information costs because it guarantees, at the time of information acquisition, a price at which the good can be purchased. Calibrations to start-up acquisition and timber auctions suggest that in practice the social losses through poor search coordination in standard formats are an order of magnitude or two larger than the (negligible) inefficiencies arising from ex-ante bidder asymmetries.Comment: JEL Classification: D44, D47, D82, D83. 117 pages, of which 74 are appendi
    • 

    corecore