140 research outputs found

    Multi-level adaptive particle refinement method with large refinement scale ratio and new free-surface detection algorithm for complex fluid-structure interaction problems

    Full text link
    Fluid-Structure Interaction (FSI) is a crucial problem in ocean engineering. The smoothed particle hydrodynamics (SPH) method has been employed recently for FSI problems in light of its Lagrangian nature and its advantage in handling multi-physics problems. The efficiency of SPH can be greatly improved with the Adaptive Particle Refinement (APR) method, which refines particles in the regions of interest while deploying coarse particles in the left areas. In this study, the APR method is further improved by developing several new algorithms. Firstly, a new particle refinement strategy with the refinement scale ratio of 4 is employed for multi-level resolutions, and this dramatically decreases the computational costs compared to the standard APR method. Secondly, the regularized transition sub-zone is deployed to render an isotropic particle distribution, which makes the solutions between the refinement zone and the non-refinement zone smoother and consequently results in a more accurate prediction. Thirdly, for complex FSI problems with free surface, a new free-surface detection method based on the Voronoi diagram is proposed, and the performance is validated in comparison to the conventional method. The improved APR method is then applied to a set of challenging FSI cases. Numerical simulations demonstrate that the results from the refinement with scale ratio 4 are consistent with other studies and experimental data, and also agree well with those employing the refinement scale ratio 2. A significant reduction in the computational time is observed for all the considered cases. Overall, the improved APR method with a large refinement scale ratio and the new free-surface detection strategy shows great potential in simulating complex FSI problems efficiently and accurately.Comment: 47 pages, 26 figures, accepted to be published by Journal of Computational Physic

    A Standard Test Case Suite for Two-Dimensional Linear Transport on the Sphere: Results from a Collection of State-of-the-Art Schemes

    Get PDF
    Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a minimal set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude–longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate–chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent. The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data sets are made available to facilitate the process of model evaluation and scheme intercomparison

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas
    • …
    corecore