467,817 research outputs found

    <i>Spitzer</i> microlens measurement of a massive remnant in a well-separated binary

    Get PDF
    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the "microlens parallax" effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations

    OGLE-2014-BLG-0289: Precise Characterization of a Quintuple-peak Gravitational Microlensing Event

    Get PDF
    We present the analysis of the binary-microlensing event OGLE-2014-BLG-0289. The event light curve exhibits five very unusual peaks, four of which were produced by caustic crossings and the other by a cusp approach. It is found that the quintuple-peak features of the light curve provide tight constraints on the source trajectory, enabling us to precisely and accurately measure the microlensing parallax πE. Furthermore, the three resolved caustics allow us to measure the angular Einstein radius θE. From the combination of πE and θE, the physical lens parameters are uniquely determined. It is found that the lens is a binary composed of two M dwarfs with masses M1 = 0.52 ± 0.04 M⊙ and M2 = 0.42 ± 0.03 M⊙ separated in projection by a⊥ = 6.4 ± 0.5 au. The lens is located in the disk with a distance of DL = 3.3 ± 0.3 kpc. The reason for the absence of a lensing signal in the Spitzer data is that the time of observation corresponds to the flat region of the light curve

    OGLE-2017-BLG-0329L: A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations

    Get PDF
    Mass measurements of gravitational microlenses require one to determine the microlens parallax π E, but precise π E measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which π E is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-π E model at the 2σ level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector π E by factors ~18 and ~4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M1, M2) ~ (1.1, 0.8) M⊙ or ~(0.4, 0.3) M⊙ according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken ~10 years after the event

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author

    Technical Report on Deploying a highly secured OpenStack Cloud Infrastructure using BradStack as a Case Study

    Full text link
    Cloud computing has emerged as a popular paradigm and an attractive model for providing a reliable distributed computing model.it is increasing attracting huge attention both in academic research and industrial initiatives. Cloud deployments are paramount for institution and organizations of all scales. The availability of a flexible, free open source cloud platform designed with no propriety software and the ability of its integration with legacy systems and third-party applications are fundamental. Open stack is a free and opensource software released under the terms of Apache license with a fragmented and distributed architecture making it highly flexible. This project was initiated and aimed at designing a secured cloud infrastructure called BradStack, which is built on OpenStack in the Computing Laboratory at the University of Bradford. In this report, we present and discuss the steps required in deploying a secured BradStack Multi-node cloud infrastructure and conducting Penetration testing on OpenStack Services to validate the effectiveness of the security controls on the BradStack platform. This report serves as a practical guideline, focusing on security and practical infrastructure related issues. It also serves as a reference for institutions looking at the possibilities of implementing a secured cloud solution.Comment: 38 pages, 19 figures

    JISC Final Report: IncReASe (Increasing Repository Content through Automation and Services)

    Get PDF
    The IncReASe (Increasing Repository Content through Automation and Services) was an eighteen month project (subsequently extended to twenty months) to enhance White Rose Research Online (WRRO)1. WRRO is a shared repository of research outputs (primarily publications) from the Universities of Leeds, Sheffield and York; it runs on the EPrints open source repository platform. The repository was created in 2004 and had steady growth but, in common with many other similar repositories, had difficulty in achieving a “critical mass” of content and in becoming truly embedded within researchers’ workflows. The main aim of the IncReASe project was to assess ingestion routes into WRRO with a view to lowering barriers to deposit. We reviewed the feasibility of bulk import of pre-existing metadata and/or full-text research outputs, hoping this activity would have a positive knock-on effect on repository growth and embedding. Prior to the project, we had identified researchers’ reluctance to duplicate effort in metadata creation as a significant barrier to WRRO uptake; we investigated how WRRO might share data with internal and external IT systems. This work included a review of how WRRO, as an institutional based repository, might interact with the subject repository of the Economic and Social Research Council (ESRC). The project addressed four main areas: (i) researcher behaviour: we investigated researcher awareness, motivation and workflow through a survey of archiving activity on the university web sites, a questionnaire and discussions with researchers (ii) bulk import: we imported data from local systems, including York’s submission data for the 2008 Research Assessment Exercise (RAE), and developed an import plug-in for use with the arXiv2 repository (iii) interoperability: we looked at how WRRO might interact with university and departmental publication databases and ESRC’s repository. (iv) metadata: we assessed metadata issues raised by importing publication data from a variety of sources. A number of outputs from the project have been made available from the IncReASe project web site http://eprints.whiterose.ac.uk/increase/. The project highlighted the low levels of researcher awareness of WRRO - and of broader open access issues, including research funders’ deposit requirements. We designed some new publicity materials to start to address this. Departmental publication databases provided a useful jumping off point for advocacy and liaison; this activity was helpful in promoting awareness of WRRO. Bulk import proved time consuming – both in terms of adjusting EPrints plug-ins to incorporate different datasets and in the staff time required to improve publication metadata. A number of deposit scenarios were developed in the context of our work with ESRC; we concentrated on investigating how a local deposit of a research paper and attendant metadata in WRRO might be used to populate ESRC’s repository. This work improved our understanding of researcher workflows and of the SWORD protocol as a potential (if partial) solution to the single deposit, multiple destination model we wish to develop; we think the prospect of institutional repository / ESRC data sharing is now a step closer. IncReASe experienced some staff recruitment difficulties. It was also necessary to adapt the project to the changing IT landscape at the three partner institutions – in particular, the introduction of a centralised publication management system at the University of Leeds. Although these factors had some impact on deliverables, the aims and objectives of the project were largely achieved

    Report on the Third Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE3)

    Get PDF
    This report records and discusses the Third Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE3). The report includes a description of the keynote presentation of the workshop, which served as an overview of sustainable scientific software. It also summarizes a set of lightning talks in which speakers highlighted to-the-point lessons and challenges pertaining to sustaining scientific software. The final and main contribution of the report is a summary of the discussions, future steps, and future organization for a set of self-organized working groups on topics including developing pathways to funding scientific software; constructing useful common metrics for crediting software stakeholders; identifying principles for sustainable software engineering design; reaching out to research software organizations around the world; and building communities for software sustainability. For each group, we include a point of contact and a landing page that can be used by those who want to join that group's future activities. The main challenge left by the workshop is to see if the groups will execute these activities that they have scheduled, and how the WSSSPE community can encourage this to happen
    corecore