3 research outputs found

    From conceptual design to process design optimization: a review on flowsheet synthesis

    Get PDF
    International audienceThis paper presents the authors’ perspectives on some of the open questions and opportunities in Process Systems Engineering (PSE) focusing on process synthesis. A general overview of process synthesis is given, and the difference between Conceptual Design (CD) and Process Design (PD) is presented using an original ternary diagram. Then, a bibliometric analysis is performed to place major research team activities in the latter. An analysis of ongoing work is conducted and some perspectives are provided based on the analysis. This analysis includes symbolic knowledge representation concepts and inference techniques, i.e., ontology, that is believed to become useful in the future. Future research challenges that process synthesis will have to face, such as biomass transformation, shale production, response to spaceflight demand, modular plant design, and intermittent production of energy, are also discussed

    Ontology-Based Data Integration in Multi-Disciplinary Engineering Environments: A Review

    Get PDF
    Today's industrial production plants are complex mechatronic systems. In the course of the production plant lifecycle, engineers from a variety of disciplines (e.g., mechanics, electronics, automation) need to collaborate in multi-disciplinary settings that are characterized by heterogeneity in terminology, methods, and tools. This collaboration yields a variety of engineering artifacts that need to be linked and integrated, which on the technical level is reflected in the need to integrate heterogeneous data. Semantic Web technologies, in particular ontologybased data integration (OBDI), are promising to tackle this challenge that has attracted strong interest from the engineering research community. This interest has resulted in a growing body of literature that is dispersed across the Semantic Web and Automation System Engineering research communities and has not been systematically reviewed so far. We address this gap with a survey reflecting on OBDI applications in the context of Multi-Disciplinary Engineering Environment (MDEE). To this end, we analyze and compare 23 OBDI applications from both the Semantic Web and the Automation System Engineering research communities. Based on this analysis, we (i) categorize OBDI variants used in MDEE, (ii) identify key problem context characteristics, (iii) compare strengths and limitations of OBDI variants as a function of problem context, and (iv) provide recommendation guidelines for the selection of OBDI variants and technologies for OBDI in MDEE

    An ontology for distributed process supervision of large-scale chemical plants

    No full text
    10.1016/j.compchemeng.2012.06.009Computers and Chemical Engineering46124-140CCEN
    corecore