4 research outputs found

    An online sequence-to-sequence model for noisy speech recognition

    Full text link
    Generative models have long been the dominant approach for speech recognition. The success of these models however relies on the use of sophisticated recipes and complicated machinery that is not easily accessible to non-practitioners. Recent innovations in Deep Learning have given rise to an alternative - discriminative models called Sequence-to-Sequence models, that can almost match the accuracy of state of the art generative models. While these models are easy to train as they can be trained end-to-end in a single step, they have a practical limitation that they can only be used for offline recognition. This is because the models require that the entirety of the input sequence be available at the beginning of inference, an assumption that is not valid for instantaneous speech recognition. To address this problem, online sequence-to-sequence models were recently introduced. These models are able to start producing outputs as data arrives, and the model feels confident enough to output partial transcripts. These models, like sequence-to-sequence are causal - the output produced by the model until any time, tt, affects the features that are computed subsequently. This makes the model inherently more powerful than generative models that are unable to change features that are computed from the data. This paper highlights two main contributions - an improvement to online sequence-to-sequence model training, and its application to noisy settings with mixed speech from two speakers.Comment: arXiv admin note: substantial text overlap with arXiv:1608.0128

    Exploring Neural Transducers for End-to-End Speech Recognition

    Full text link
    In this work, we perform an empirical comparison among the CTC, RNN-Transducer, and attention-based Seq2Seq models for end-to-end speech recognition. We show that, without any language model, Seq2Seq and RNN-Transducer models both outperform the best reported CTC models with a language model, on the popular Hub5'00 benchmark. On our internal diverse dataset, these trends continue - RNNTransducer models rescored with a language model after beam search outperform our best CTC models. These results simplify the speech recognition pipeline so that decoding can now be expressed purely as neural network operations. We also study how the choice of encoder architecture affects the performance of the three models - when all encoder layers are forward only, and when encoders downsample the input representation aggressively

    Alignment Knowledge Distillation for Online Streaming Attention-based Speech Recognition

    Full text link
    This article describes an efficient training method for online streaming attention-based encoder-decoder (AED) automatic speech recognition (ASR) systems. AED models have achieved competitive performance in offline scenarios by jointly optimizing all components. They have recently been extended to an online streaming framework via models such as monotonic chunkwise attention (MoChA). However, the elaborate attention calculation process is not robust for long-form speech utterances. Moreover, the sequence-level training objective and time-restricted streaming encoder cause a nonnegligible delay in token emission during inference. To address these problems, we propose CTC synchronous training (CTC-ST), in which CTC alignments are leveraged as a reference for token boundaries to enable a MoChA model to learn optimal monotonic input-output alignments. We formulate a purely end-to-end training objective to synchronize the boundaries of MoChA to those of CTC. The CTC model shares an encoder with the MoChA model to enhance the encoder representation. Moreover, the proposed method provides alignment information learned in the CTC branch to the attention-based decoder. Therefore, CTC-ST can be regarded as self-distillation of alignment knowledge from CTC to MoChA. Experimental evaluations on a variety of benchmark datasets show that the proposed method significantly reduces recognition errors and emission latency simultaneously, especially for long-form and noisy speech. We also compare CTC-ST with several methods that distill alignment knowledge from a hybrid ASR system and show that the CTC-ST can achieve a comparable tradeoff of accuracy and latency without relying on external alignment information. The best MoChA system shows performance comparable to that of RNN-transducer (RNN-T)

    Deep Learning Based Chatbot Models

    Full text link
    A conversational agent (chatbot) is a piece of software that is able to communicate with humans using natural language. Modeling conversation is an important task in natural language processing and artificial intelligence. While chatbots can be used for various tasks, in general they have to understand users' utterances and provide responses that are relevant to the problem at hand. In my work, I conduct an in-depth survey of recent literature, examining over 70 publications related to chatbots published in the last 3 years. Then, I proceed to make the argument that the very nature of the general conversation domain demands approaches that are different from current state-of-of-the-art architectures. Based on several examples from the literature I show why current chatbot models fail to take into account enough priors when generating responses and how this affects the quality of the conversation. In the case of chatbots, these priors can be outside sources of information that the conversation is conditioned on like the persona or mood of the conversers. In addition to presenting the reasons behind this problem, I propose several ideas on how it could be remedied. The next section focuses on adapting the very recent Transformer model to the chatbot domain, which is currently state-of-the-art in neural machine translation. I first present experiments with the vanilla model, using conversations extracted from the Cornell Movie-Dialog Corpus. Secondly, I augment the model with some of my ideas regarding the issues of encoder-decoder architectures. More specifically, I feed additional features into the model like mood or persona together with the raw conversation data. Finally, I conduct a detailed analysis of how the vanilla model performs on conversational data by comparing it to previous chatbot models and how the additional features affect the quality of the generated responses.Comment: 67 pages. Written in October of 2017 for a university conference. In April of 2019, it won first place at the Hungarian Scientific Students' Associations Report, which is a national competition-like conference for student
    corecore