7 research outputs found

    WPU-Net: Boundary Learning by Using Weighted Propagation in Convolution Network

    Full text link
    Deep learning has driven a great progress in natural and biological image processing. However, in material science and engineering, there are often some flaws and indistinctions in material microscopic images induced from complex sample preparation, even due to the material itself, hindering the detection of target objects. In this work, we propose WPU-net that redesigns the architecture and weighted loss of U-Net, which forces the network to integrate information from adjacent slices and pays more attention to the topology in boundary detection task. Then, the WPU-net is applied into a typical material example, i.e., the grain boundary detection of polycrystalline material. Experiments demonstrate that the proposed method achieves promising performance and outperforms state-of-the-art methods. Besides, we propose a new method for object tracking between adjacent slices, which can effectively reconstruct 3D structure of the whole material. Finally, we present a material microscopic image dataset with the goal of advancing the state-of-the-art in image processing for material science.Comment: technical repor

    Prediction of glioma‑subtypes: comparison of performance on a DL classifier using bounding box areas versus annotated tumors

    Get PDF
    Background: For brain tumors, identifying the molecular subtypes from magnetic resonance imaging (MRI) isdesirable, but remains a challenging task. Recent machine learning and deep learning (DL) approaches may help theclassification/prediction of tumor subtypes through MRIs. However, most of these methods require annotated datawith ground truth (GT) tumor areas manually drawn by medical experts. The manual annotation is a time consumingprocess with high demand on medical personnel. As an alternative automatic segmentation is often used. However, itdoes not guarantee the quality and could lead to improper or failed segmented boundaries due to differences in MRIacquisition parameters across imaging centers, as segmentation is an ill‑defined problem. Analogous to visual objecttracking and classification, this paper shifts the paradigm by training a classifier using tumor bounding box areas inMR images. The aim of our study is to see whether it is possible to replace GT tumor areas by tumor bounding boxareas (e.g. ellipse shaped boxes) for classification without a significant drop in performance.Method: In patients with diffuse gliomas, training a deep learning classifier for subtype prediction by employ‑ing tumor regions of interest (ROIs) using ellipse bounding box versus manual annotated data. Experiments wereconducted on two datasets (US and TCGA) consisting of multi‑modality MRI scans where the US dataset containedpatients with diffuse low‑grade gliomas (dLGG) exclusively.Results: Prediction rates were obtained on 2 test datasets: 69.86% for 1p/19q codeletion status on US dataset and79.50% for IDH mutation/wild‑type on TCGA dataset. Comparisons with that of using annotated GT tumor data fortraining showed an average of 3.0% degradation (2.92% for 1p/19q codeletion status and 3.23% for IDH genotype).Conclusion: Using tumor ROIs, i.e., ellipse bounding box tumor areas to replace annotated GT tumor areas for train‑ing a deep learning scheme, cause only a modest decline in performance in terms of subtype prediction. With moredata that can be made available, this may be a reasonable trade‑off where decline in performance may be counter‑acted with more data

    Slantlet transform-based segmentation and α -shape theory-based 3D visualization and volume calculation methods for MRI brain tumour

    Get PDF
    Magnetic Resonance Imaging (MRI) being the foremost significant component of medical diagnosis which requires careful, efficient, precise and reliable image analyses for brain tumour detection, segmentation, visualisation and volume calculation. The inherently varying nature of tumour shapes, locations and image intensities make brain tumour detection greatly intricate. Certainly, having a perfect result of brain tumour detection and segmentation is advantageous. Despite several available methods, tumour detection and segmentation are far from being resolved. Meanwhile, the progress of 3D visualisation and volume calculation of brain tumour is very limited due to absence of ground truth. Thus, this study proposes four new methods, namely abnormal MRI slice detection, brain tumour segmentation based on Slantlet Transform (SLT), 3D visualization and volume calculation of brain tumour based on Alpha (α) shape theory. In addition, two new datasets along with ground truth are created to validate the shape and volume of the brain tumour. The methodology involves three main phases. In the first phase, it begins with the cerebral tissue extraction, followed by abnormal block detection and its fine-tuning mechanism, and ends with abnormal slice detection based on the detected abnormal blocks. The second phase involves brain tumour segmentation that covers three processes. The abnormal slice is first decomposed using the SLT, then its significant coefficients are selected using Donoho universal threshold. The resultant image is composed using inverse SLT to obtain the tumour region. Finally, in the third phase, four original ideas are proposed to visualise and calculate the volume of the tumour. The first idea involves the determination of an optimal α value using a new formula. The second idea is to merge all tumour points for all abnormal slices using the α value to form a set of tetrahedrons. The third idea is to select the most relevant tetrahedrons using the α value as the threshold. The fourth idea is to calculate the volume of the tumour based on the selected tetrahedrons. In order to evaluate the performance of the proposed methods, a series of experiments are conducted using three standard datasets which comprise of 4567 MRI slices of 35 patients. The methods are evaluated using standard practices and benchmarked against the best and up-to-date techniques. Based on the experiments, the proposed methods have produced very encouraging results with an accuracy rate of 96% for the abnormality slice detection along with sensitivity and specificity of 99% for brain tumour segmentation. A perfect result for the 3D visualisation and volume calculation of brain tumour is also attained. The admirable features of the results suggest that the proposed methods may constitute a basis for reliable MRI brain tumour diagnosis and treatments

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    This Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that offers, in addition to all the functionality specifically described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient
    corecore