182 research outputs found

    An interactive geometry modeling and parametric design platform for isogeometric analysis

    Get PDF
    In this paper an interactive parametric design-through-analysis platform is proposed to help design engineers and analysts make more effective use of Isogeometric Analysis (IGA) to improve their product design and performance. We develop several Rhinoceros (Rhino) plug-ins to take input design parameters through a user-friendly interface, generate appropriate surface and/or volumetric models, perform mechanical analysis, and visualize the solution fields, all within the same Computer-Aided Design (CAD) program. As part of this effort we propose and implement graphical generative algorithms for IGA model creation and visualization based on Grasshopper, a visual programming interface to Rhino. The developed platform is demonstrated on two structural mechanics examples—an actual wind turbine blade and a model of an integrally bladed rotor (IBR). In the latter example we demonstrate how the Rhino functionality may be utilized to create conforming volumetric models for IGA

    Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis

    Get PDF
    Fluid–structure interaction (FSI) analysis of a full-scale hydraulic arresting gear used to retard the forward motion of an aircraft landing on an aircraft-carrier deck is performed. The simulations make use of the recently developed core and special-purpose FSI techniques for other problem classes, specialized to the present application. A recently proposed interactive geometry modeling and parametric design platform for isogeometric analysis (IGA) is directly employed to create the arresting gear model, and illustrates a natural application of IGA to this problem class. The fluid mechanics and FSI simulation results are reported in terms of the arresting-gear rotor loads and blade structural deformation and vibration. Excellent agreement is achieved with the experimental results for the arresting gear design simulated in this work

    A framework for parametric design optimization using isogeometric analysis

    Get PDF
    Isogeometric analysis (IGA) fundamentally seeks to bridge the gap between engineering design and high-fidelity computational analysis by using spline functions as finite element bases. However, additional computational design paradigms must be taken into consideration to ensure that designers can take full advantage of IGA, especially within the context of design optimization. In this work, we propose a novel approach that employs IGA methodologies while still rigorously abiding by the paradigms of advanced design parameterization, analysis model validity, and interactivity. The entire design lifecycle utilizes a consistent geometry description and is contained within a single platform. Because of this unified workflow, iterative design optimization can be naturally integrated. The proposed methodology is demonstrated through an IGA-based parametric design optimization framework implemented using the Grasshopper algorithmic modeling interface for Rhinoceros 3D. The framework is capable of performing IGA-based design optimization of realistic engineering structures that are practically constructed through the use of complex geometric operations. We demonstrate the framework’s effectiveness on both an internally pressurized tube and a wind turbine blade, highlighting its applicability across a spectrum of design complexity. In addition to inherently featuring the advantageous characteristics of IGA, the seamless nature of the workflow instantiated in this framework diminishes the obstacles traditionally encountered when performing finite-element-analysis-based design optimization

    A geometric framework for immersogeometric analysis

    Get PDF
    The purpose of this dissertation is to develop a geometric framework for immersogeometric analysis that directly uses the boundary representations (B-reps) of a complex computer-aided design (CAD) model and immerses it into a locally refined, non-boundary-fitted discretization of the fluid domain. Using the non-boundary-fitted mesh which does not need to conform to the shape of the object can alleviate the challenge of mesh generation for complex geometries. This also reduces the labor-intensive and time-consuming work of geometry cleanup for the purpose of obtaining watertight CAD models in order to perform boundary-fitted mesh generation. The Dirichlet boundary conditions in the fluid domain are enforced weakly over the immersed object surface in the intersected elements. The surface quadrature points for the immersed object are generated on the parametric and analytic surfaces of the B-rep models. In the case of trimmed surfaces, adaptive quadrature rule is considered to improve the accuracy of the surface integral. For the non-boundary-fitted mesh, a sub-cell-based adaptive quadrature rule based on the recursive splitting of quadrature elements is used to faithfully capture the geometry in intersected elements. The point membership classification for identifying quadrature points in the fluid domain is based on a voxel-based approach implemented on GPUs. A variety of computational fluid dynamics (CFD) simulations are performed using the proposed method to assess its accuracy and efficiency. Finally, a fluid--structure interaction (FSI) simulation of a deforming left ventricle coupled with the heart valves shows the potential advantages of the developed geometric framework for the immersogeomtric analysis with complex moving domains

    Parametric Design and Isogeometric Analysis of Tunnel Linings within the Building Information Modelling Framework

    Get PDF
    Both planning and design phase of large infrastructural project require analysis, modelling, visualization, and numerical analysis. To perform these tasks, different tools such as Building Information Modelling (BIM) and numerical analysis software are commonly employed. However, in current engineering practice, there are no systematic solutions for the exchange between design and analysis models, and these tasks usually involve manual and error-prone model generation, setup and update. In this paper, focussing on tunnelling engineering, we demonstrate a systematic and versatile approach to efficiently generate a tunnel design and analyse the lining in different practical scenarios. To this end, a BIM-based approach is developed, which connects a user-friendly industry-standard BIM software with effective simulation tools for high-performance computing. A fully automatized design-through-analysis workflow solution for segmented tunnel lining is developed based on a fully parametric design model and an isogeometric analysis software, connected through an interface implemented with a Revit plugin

    A framework for isogeometric-analysis-based design and optimization of wind turbine blades

    Get PDF
    Typical wind turbine blade design procedures employ reduced-order models almost exclusively for early-stage design; high-fidelity, finite-element-based procedures are reserved for later design stages because they entail complex workflows, large volumes of data, and significant computational expense. Yet, high-fidelity structural analyses often provide design-governing feedback such as buckling load factors. Mitigation of the issues of workflow complexity, data volume, and computational expense would allow designers to utilize high-fidelity structural analysis feedback earlier, more easily, and more often in the design process. Thus, this work presents a blade analysis framework which employs isogeometric analysis (IGA), a simulation method that overcomes many of the aforementioned drawbacks associated with traditional finite element analysis (FEA). IGA directly utilizes the mathematical models generated by computer-aided design (CAD) software, requires less user interaction and no conversion of CAD geometries to finite element meshes, and tends to have superior per-degree-of-freedom accuracy compared to traditional FEA. The presented framework employs the parametric capabilities of the Grasshopper algorithmic modeling interface developed for the CAD software Rhinoceros 3D. This Grasshopper-based framework enables seamless, iterative design and IGA of CAD-based geometries and is demonstrated through the optimization of both a pressurized tube and a simplified wind turbine blade design. Further, because engineering models, such as wind turbine blades, are typically composed of numerous surface patches, a novel patch coupling technique is presented. For the sake of straightforward implementation and flexibility, the coupling technique is based on a penalty energy approach. Formulations for the penalty parameters are proposed to eliminate the problem-dependent nature of the penalty method. This coupling methodology is successfully demonstrated using a number of multi-patch benchmark examples with both matching and non-matching interface discretizations. Together, these technologies enable practical and efficient design and analysis of wind turbine blade shell structures. The presented IGA approach is employed to perform vibration, buckling, and nonlinear deformation analysis of the NREL/SNL 5 MW wind turbine blade, validating the effectiveness of the proposed approach for realistic, composite wind turbine blade designs. Further, a blade design framework that combines reduced-order aeroelastic analysis with the presented IGA methodologies is outlined. Aeroelastic analysis is used to efficiently provide dynamic kinematic data for a wide range of wind load cases, while IGA is used to perform high-fidelity buckling analysis. Finally, the value and feasibility of incorporating high-fidelity IGA feedback into optimization is demonstrated through optimization of the NREL/SNL 5 MW wind turbine blade. Alternative structural designs that have improved blade mass and material cost characteristics are identified, and IGA-based buckling analysis is shown to provide design-governing constraint information

    Ship-Hull Shape Optimization with a T-spline based BEM-Isogeometric Solver

    Get PDF
    In this work, we present a ship-hull optimization process combining a T-spline based parametric ship-hull model and an Isogeometric Analysis (IGA) hydrodynamic solver for the calculation of ship wave resistance. The surface representation of the ship-hull instances comprise one cubic T-spline with extraordinary points, ensuring C2C2 continuity everywhere except for the vicinity of extraordinary points where G1G1 continuity is achieved. The employed solver for ship wave resistance is based on the Neumann–Kelvin formulation of the problem, where the resulting Boundary Integral Equation is numerically solved using a higher order collocated Boundary Element Method which adopts the IGA concept and the T-spline representation for the ship-hull surface. The hydrodynamic solver along with the ship parametric model are subsequently integrated within an appropriate optimization environment for local and global ship-hull optimizations against the criterion of minimum resistance

    Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models

    Get PDF
    This paper builds on a recently developed immersogeometric fluid–structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart

    The modal analysis of three-dimension gun barrel using isogeometric analysis and its application to optimization

    Get PDF
    In this paper, the Isogeometric Analysis (IGA) is applied to make the modal analysis for 3D gun barrel. The geometry of IGA is modeled by None-Uniform Rational B-Splines (NURBS) which is exact and smooth even at the coarsest mesh level. The first 9 natural frequencies were calculated respectively by IGA and traditional finite element method (ABAQUS), and compared with the test results. The maximum relative error between numerical value and experimental value is less than 3.6 % which verifies the feasibility of numerical model. Six different refinement schemes were analyzed to compare the computational accuracy and efficiency of IGA and ABAQUS. To achieve the credible results, the CPU time of ABAQUS is more than twice of IGA. On this basis, the IGA method is used for the structural shape optimization of gun barrel. The first natural frequency is increased by 6.96 % and the barrel mass is reduced by 4.9 %

    Ship-hull shape optimization with a T-spline based BEM-isogeometric solver

    Get PDF
    In this work, we present a ship-hull optimization process combining a T-spline based parametric ship-hull model and an Isogeometric Analysis (IGA) hydrodynamic solver for the calculation of ship wave resistance. The surface representation of the ship-hull instances comprise one cubic T-spline with extraordinary points, ensuring C2 continuity everywhere except for the vicinity of extraordinary points where G1 continuity is achieved. The employed solver for ship wave resistance is based on the Neumann-Kelvin formulation of the problem, where the resulting Boundary Integral Equation is numerically solved using a higher order collocated Boundary Element Method which adopts the IGA concept and the T-spline representation for the ship-hull surface. The hydrodynamic solver along with the ship parametric model are subsequently integrated within an appropriate optimization environment for local and global ship-hull optimizations against the criterion of minimum resistance
    corecore