4,271 research outputs found

    Analytical model of 1D Carbon-based Schottky-Barrier Transistors

    Full text link
    Nanotransistors typically operate in far-from-equilibrium (FFE) conditions, that cannot be described neither by drift-diffusion, nor by purely ballistic models. In carbonbased nanotransistors, source and drain contacts are often characterized by the formation of Schottky Barriers (SBs), with strong influence on transport. Here we present a model for onedimensional field-effect transistors (FETs), taking into account on equal footing both SB contacts and FFE transport regime. Intermediate transport is introduced within the Buttiker probe approach to dissipative transport, in which a non-ballistic transistor is seen as a suitable series of individually ballistic channels. Our model permits the study of the interplay of SBs and ambipolar FFE transport, and in particular of the transition between SB-limited and dissipation-limited transport

    Monolithically Patterned Wide-Narrow-Wide All-Graphene Devices

    Full text link
    We investigate theoretically the performance advantages of all-graphene nanoribbon field-effect transistors (GNRFETs) whose channel and source/drain (contact) regions are patterned monolithically from a two-dimensional single sheet of graphene. In our simulated devices, the source/drain and interconnect regions are composed of wide graphene nanoribbon (GNR) sections that are semimetallic, while the channel regions consist of narrow GNR sections that open semiconducting bandgaps. Our simulation employs a fully atomistic model of the device, contact and interfacial regions using tight-binding theory. The electronic structures are coupled with a self-consistent three-dimensional Poisson's equation to capture the nontrivial contact electrostatics, along with a quantum kinetic formulation of transport based on non-equilibrium Green's functions (NEGF). Although we only consider a specific device geometry, our results establish several general performance advantages of such monolithic devices (besides those related to fabrication and patterning), namely the improved electrostatics, suppressed short-channel effects, and Ohmic contacts at the narrow-to-wide interfaces.Comment: 9 pages, 11 figures, 2 table

    Simulation of hydrogenated graphene Field-Effect Transistors through a multiscale approach

    Full text link
    In this work, we present a performance analysis of Field Effect Transistors based on recently fabricated 100% hydrogenated graphene (the so-called graphane) and theoretically predicted semi-hydrogenated graphene (i.e. graphone). The approach is based on accurate calculations of the energy bands by means of GW approximation, subsequently fitted with a three-nearest neighbor (3NN) sp3 tight-binding Hamiltonian, and finally used to compute ballistic transport in transistors based on functionalized graphene. Due to the large energy gap, the proposed devices have many of the advantages provided by one-dimensional graphene nanoribbon FETs, such as large Ion and Ion/Ioff ratios, reduced band-to-band tunneling, without the corresponding disadvantages in terms of prohibitive lithography and patterning requirements for circuit integration

    Model and performance evaluation of field-effect transistors based on epitaxial graphene on SiC

    Full text link
    In view of the appreciable semiconducting gap of 0.26 eV observed in recent experiments, epitaxial graphene on a SiC substrate seems a promising channel material for FETs. Indeed, it is two-dimensional - and therefore does not require prohibitive lithography - and exhibits a wider gap than other alternative options, such as bilayer graphene. Here we propose a model and assess the achievable performance of a nanoscale FET based on epitaxial graphene on SiC, conducting an exploration of the design parameter space. We show that the current can be modulated by 4 orders of magnitude; for digital applications an Ion /Ioff ratio of 50 and a subthreshold slope of 145 mV/decade can be obtained with a supply voltage of 0.25 V. This represents a significant progress towards solid-state integration of graphene electronics, but not yet sufficient for digital applications
    • …
    corecore