64,448 research outputs found

    Observational Data-Driven Modeling and Optimization of Manufacturing Processes

    Full text link
    The dramatic increase of observational data across industries provides unparalleled opportunities for data-driven decision making and management, including the manufacturing industry. In the context of production, data-driven approaches can exploit observational data to model, control and improve the process performance. When supplied by observational data with adequate coverage to inform the true process performance dynamics, they can overcome the cost associated with intrusive controlled designed experiments and can be applied for both monitoring and improving process quality. We propose a novel integrated approach that uses observational data for process parameter design while simultaneously identifying the significant control variables. We evaluate our method using simulated experiments and also apply it to a real-world case setting from a tire manufacturing company

    Enhancing Network Embedding with Auxiliary Information: An Explicit Matrix Factorization Perspective

    Full text link
    Recent advances in the field of network embedding have shown the low-dimensional network representation is playing a critical role in network analysis. However, most of the existing principles of network embedding do not incorporate auxiliary information such as content and labels of nodes flexibly. In this paper, we take a matrix factorization perspective of network embedding, and incorporate structure, content and label information of the network simultaneously. For structure, we validate that the matrix we construct preserves high-order proximities of the network. Label information can be further integrated into the matrix via the process of random walk sampling to enhance the quality of embedding in an unsupervised manner, i.e., without leveraging downstream classifiers. In addition, we generalize the Skip-Gram Negative Sampling model to integrate the content of the network in a matrix factorization framework. As a consequence, network embedding can be learned in a unified framework integrating network structure and node content as well as label information simultaneously. We demonstrate the efficacy of the proposed model with the tasks of semi-supervised node classification and link prediction on a variety of real-world benchmark network datasets.Comment: DASFAA 201

    Beyond Photometric Loss for Self-Supervised Ego-Motion Estimation

    Full text link
    Accurate relative pose is one of the key components in visual odometry (VO) and simultaneous localization and mapping (SLAM). Recently, the self-supervised learning framework that jointly optimizes the relative pose and target image depth has attracted the attention of the community. Previous works rely on the photometric error generated from depths and poses between adjacent frames, which contains large systematic error under realistic scenes due to reflective surfaces and occlusions. In this paper, we bridge the gap between geometric loss and photometric loss by introducing the matching loss constrained by epipolar geometry in a self-supervised framework. Evaluated on the KITTI dataset, our method outperforms the state-of-the-art unsupervised ego-motion estimation methods by a large margin. The code and data are available at https://github.com/hlzz/DeepMatchVO.Comment: Accepted by ICRA 201

    Learning to Design Circuits

    Full text link
    Analog IC design relies on human experts to search for parameters that satisfy circuit specifications with their experience and intuitions, which is highly labor intensive, time consuming and suboptimal. Machine learning is a promising tool to automate this process. However, supervised learning is difficult for this task due to the low availability of training data: 1) Circuit simulation is slow, thus generating large-scale dataset is time-consuming; 2) Most circuit designs are propitiatory IPs within individual IC companies, making it expensive to collect large-scale datasets. We propose Learning to Design Circuits (L2DC) to leverage reinforcement learning that learns to efficiently generate new circuits data and to optimize circuits. We fix the schematic, and optimize the parameters of the transistors automatically by training an RL agent with no prior knowledge about optimizing circuits. After iteratively getting observations, generating a new set of transistor parameters, getting a reward, and adjusting the model, L2DC is able to optimize circuits. We evaluate L2DC on two transimpedance amplifiers. Trained for a day, our RL agent can achieve comparable or better performance than human experts trained for a quarter. It first learns to meet hard-constraints (eg. gain, bandwidth), and then learns to optimize good-to-have targets (eg. area, power). Compared with grid search-aided human design, L2DC can achieve 250×\mathbf{250}\boldsymbol{\times} higher sample efficiency with comparable performance. Under the same runtime constraint, the performance of L2DC is also better than Bayesian Optimization.Comment: NeurIPS 2018 Workshop on Machine Learning for System

    Hand Pose Estimation through Semi-Supervised and Weakly-Supervised Learning

    Full text link
    We propose a method for hand pose estimation based on a deep regressor trained on two different kinds of input. Raw depth data is fused with an intermediate representation in the form of a segmentation of the hand into parts. This intermediate representation contains important topological information and provides useful cues for reasoning about joint locations. The mapping from raw depth to segmentation maps is learned in a semi/weakly-supervised way from two different datasets: (i) a synthetic dataset created through a rendering pipeline including densely labeled ground truth (pixelwise segmentations); and (ii) a dataset with real images for which ground truth joint positions are available, but not dense segmentations. Loss for training on real images is generated from a patch-wise restoration process, which aligns tentative segmentation maps with a large dictionary of synthetic poses. The underlying premise is that the domain shift between synthetic and real data is smaller in the intermediate representation, where labels carry geometric and topological meaning, than in the raw input domain. Experiments on the NYU dataset show that the proposed training method decreases error on joints over direct regression of joints from depth data by 15.7%.Comment: 13 pages, 10 figures, 4 table

    Semantic Hierarchical Priors for Intrinsic Image Decomposition

    Full text link
    Intrinsic Image Decomposition (IID) is a challenging and interesting computer vision problem with various applications in several fields. We present novel semantic priors and an integrated approach for single image IID that involves analyzing image at three hierarchical context levels. Local context priors capture scene properties at each pixel within a small neighbourhood. Mid-level context priors encode object level semantics. Global context priors establish correspondences at the scene level. Our semantic priors are designed on both fixed and flexible regions, using selective search method and Convolutional Neural Network features. Our IID method is an iterative multistage optimization scheme and consists of two complementary formulations: L2L_2 smoothing for shading and L1L_1 sparsity for reflectance. Experiments and analysis of our method indicate the utility of our semantic priors and structured hierarchical analysis in an IID framework. We compare our method with other contemporary IID solutions and show results with lesser artifacts. Finally, we highlight that proper choice and encoding of prior knowledge can produce competitive results even when compared to end-to-end deep learning IID methods, signifying the importance of such priors. We believe that the insights and techniques presented in this paper would be useful in the future IID research

    Unseen Object Segmentation in Videos via Transferable Representations

    Full text link
    In order to learn object segmentation models in videos, conventional methods require a large amount of pixel-wise ground truth annotations. However, collecting such supervised data is time-consuming and labor-intensive. In this paper, we exploit existing annotations in source images and transfer such visual information to segment videos with unseen object categories. Without using any annotations in the target video, we propose a method to jointly mine useful segments and learn feature representations that better adapt to the target frames. The entire process is decomposed into two tasks: 1) solving a submodular function for selecting object-like segments, and 2) learning a CNN model with a transferable module for adapting seen categories in the source domain to the unseen target video. We present an iterative update scheme between two tasks to self-learn the final solution for object segmentation. Experimental results on numerous benchmark datasets show that the proposed method performs favorably against the state-of-the-art algorithms.Comment: Accepted in ACCV'18 (oral). Code is available at https://github.com/wenz116/TransferSe

    Discriminative Similarity for Clustering and Semi-Supervised Learning

    Full text link
    Similarity-based clustering and semi-supervised learning methods separate the data into clusters or classes according to the pairwise similarity between the data, and the pairwise similarity is crucial for their performance. In this paper, we propose a novel discriminative similarity learning framework which learns discriminative similarity for either data clustering or semi-supervised learning. The proposed framework learns classifier from each hypothetical labeling, and searches for the optimal labeling by minimizing the generalization error of the learned classifiers associated with the hypothetical labeling. Kernel classifier is employed in our framework. By generalization analysis via Rademacher complexity, the generalization error bound for the kernel classifier learned from hypothetical labeling is expressed as the sum of pairwise similarity between the data from different classes, parameterized by the weights of the kernel classifier. Such pairwise similarity serves as the discriminative similarity for the purpose of clustering and semi-supervised learning, and discriminative similarity with similar form can also be induced by the integrated squared error bound for kernel density classification. Based on the discriminative similarity induced by the kernel classifier, we propose new clustering and semi-supervised learning methods

    Deep Clustering with a Dynamic Autoencoder: From Reconstruction towards Centroids Construction

    Full text link
    In unsupervised learning, there is no apparent straightforward cost function that can capture the significant factors of variations and similarities. Since natural systems have smooth dynamics, an opportunity is lost if an unsupervised objective function remains static during the training process. The absence of concrete supervision suggests that smooth dynamics should be integrated. Compared to classical static cost functions, dynamic objective functions allow to better make use of the gradual and uncertain knowledge acquired through pseudo-supervision. In this paper, we propose Dynamic Autoencoder (DynAE), a novel model for deep clustering that overcomes a clustering-reconstruction trade-off, by gradually and smoothly eliminating the reconstruction objective function in favor of a construction one. Experimental evaluations on benchmark datasets show that our approach achieves state-of-the-art results compared to the most relevant deep clustering methods
    • …
    corecore