4 research outputs found

    BeSmart2: A multicriteria decision aid application

    Get PDF
    This paper presents an improved version of an application whose goal is to provide a simple and intuitive way to use multicriteria decision methods in day-to-day decision problems. The application allows comparisons between several alternatives with several criteria, always keeping a permanent backup of both model and results, and provides a framework to incorporate new methods in the future. Developed in C#, the application implements the AHP, SMART and Value Functions methods

    Semi-Structured Decision Processes: A Conceptual Framework for Understanding Human-Automation Decision Systems

    Get PDF
    The purpose of this work is to improve understanding of existing and proposed decision systems, ideally to improve the design of future systems. A "decision system" is defined as a collection of information-processing components -- often involving humans and automation (e.g., computers) -- that interact towards a common set of objectives. Since a key issue in the design of decision systems is the division of work between humans and machines (a task known as "function allocation"), this report is primarily intended to help designers incorporate automation more appropriately within these systems. This report does not provide a design methodology, but introduces a way to qualitatively analyze potential designs early in the system design process. A novel analytical framework is presented, based on the concept of "semi-Structured" decision processes. It is believed that many decisions involve both well-defined "Structured" parts (e.g., formal procedures, traditional algorithms) and ill-defined "Unstructured" parts (e.g., intuition, judgement, neural networks) that interact in a known manner. While Structured processes are often desired because they fully prescribe how a future decision (during "operation") will be made, they are limited by what is explicitly understood prior to operation. A system designer who incorporates Unstructured processes into a decision system understands which parts are not understood sufficiently, and relinquishes control by deferring decision-making from design to operation. Among other things, this design choice tends to add flexibility and robustness. The value of the semi-Structured framework is that it forces people to consider system design concepts as operational decision processes in which both well-defined and ill-defined components are made explicit. This may provide more insight into decision systems, and improve understanding of the implications of design choices. The first part of this report defines the semi-Structured process and introduces a diagrammatic notation for decision process models. In the second part, the semi-Structured framework is used to understand and explain highly evolved decision system designs (these are assumed to be representative of "good" designs) whose components include feedback controllers, alerts, decision aids, and displays. Lastly, the semi-Structured framework is applied to a decision system design for a mobile robot.Charles Stark Draper Laboratory, Inc., under IR&D effort 101

    Semi-structured decision processes : a conceptual framework for understanding human-automation systems

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1999.Includes bibliographical references (p. 191-199).The purpose of this work is to improve understanding of existing and proposed decision systems, ideally to improve the design of future systems. A "decision system" is defined as a collection of information-processing components-often involving humans and automation (e.g., computers)-that interact towards a common set of objectives. Since a key issue in the design of decision systems is the division of work between humans and machines (a task known as "function allocation"), this thesis is primarily intended to help designers incorporate automation more appropriately within these systems. This thesis does not provide a design methodology, but introduces a way to qualitatively analyze potential designs early in the system design process. A novel analytical framework is presented, based on the concept of "semi-Structured" decision processes. It is believed that many decisions involve both well-defined "Structured" parts (e.g., formal procedures, traditional algorithms) and ill-defined "Unstructured" parts (e.g., intuition, judgment, neural networks) that interact in a known manner. While Structured processes are often desired because they fully prescribe how a future decision (during "operation") will be made, they are limited by what is explicitly understood prior to operation. A system designer who incorporates Unstructured processes into a decision system understands which parts are not understood sufficiently, and relinquishes control by deferring decision-making from design to operation. Among other things, this design choice tends to add flexibility and robustness. The value of the semi-Structured framework is that it forces people to consider system design concepts as operational decision processes in which both well-defined and ill-defined components are made explicit. This may provide more insight into decision systems, and improve understanding of the implications of design choices. The first part of this thesis defines the semi-Structured process and introduces a diagrammatic notation for decision process models. In the second part, the semi-Structured framework is used to understand and explain highly evolved decision system designs (these are assumed to be representative of "good" designs) whose components include feedback controllers, alerts, decision aids, and displays. Lastly, the semi-Structured framework is applied to a decision system design for a mobile robot.by William N. Kaliardos.Ph.D

    An object-oriented approach to structuring multicriteria decision support in natural resource management problems

    Get PDF
    Includes bibliographical references.The undertaking of MCDM (Multicriteria Decision Making) and the development of DSSs (Decision Support Systems) tend to be complex and inefficient, leading to low productivity in decision analysis and DSSs. Towards this end, this study has developed an approach based on object orientation for MCDM and DSS modelling, with the emphasis on natural resource management. The object-oriented approach provides a philosophy to model decision analysis and DSSs in a uniform way, as shown by the diagrams presented in this study. The solving of natural resource management decision problems, the MCDM decision making procedure and decision making activities are modelled in an object-oriented way. The macro decision analysis system, its DSS, the decision problem, the decision context, and the entities in the decision making procedure are represented as "objects". The object-oriented representation of decision analysis also constitutes the basis for the analysis ofDSSs
    corecore