46,407 research outputs found

    Attribute-Guided Network for Cross-Modal Zero-Shot Hashing

    Full text link
    Zero-Shot Hashing aims at learning a hashing model that is trained only by instances from seen categories but can generate well to those of unseen categories. Typically, it is achieved by utilizing a semantic embedding space to transfer knowledge from seen domain to unseen domain. Existing efforts mainly focus on single-modal retrieval task, especially Image-Based Image Retrieval (IBIR). However, as a highlighted research topic in the field of hashing, cross-modal retrieval is more common in real world applications. To address the Cross-Modal Zero-Shot Hashing (CMZSH) retrieval task, we propose a novel Attribute-Guided Network (AgNet), which can perform not only IBIR, but also Text-Based Image Retrieval (TBIR). In particular, AgNet aligns different modal data into a semantically rich attribute space, which bridges the gap caused by modality heterogeneity and zero-shot setting. We also design an effective strategy that exploits the attribute to guide the generation of hash codes for image and text within the same network. Extensive experimental results on three benchmark datasets (AwA, SUN, and ImageNet) demonstrate the superiority of AgNet on both cross-modal and single-modal zero-shot image retrieval tasks.Comment: 9 pages, 8 figure

    Learning to Hash for Indexing Big Data - A Survey

    Full text link
    The explosive growth in big data has attracted much attention in designing efficient indexing and search methods recently. In many critical applications such as large-scale search and pattern matching, finding the nearest neighbors to a query is a fundamental research problem. However, the straightforward solution using exhaustive comparison is infeasible due to the prohibitive computational complexity and memory requirement. In response, Approximate Nearest Neighbor (ANN) search based on hashing techniques has become popular due to its promising performance in both efficiency and accuracy. Prior randomized hashing methods, e.g., Locality-Sensitive Hashing (LSH), explore data-independent hash functions with random projections or permutations. Although having elegant theoretic guarantees on the search quality in certain metric spaces, performance of randomized hashing has been shown insufficient in many real-world applications. As a remedy, new approaches incorporating data-driven learning methods in development of advanced hash functions have emerged. Such learning to hash methods exploit information such as data distributions or class labels when optimizing the hash codes or functions. Importantly, the learned hash codes are able to preserve the proximity of neighboring data in the original feature spaces in the hash code spaces. The goal of this paper is to provide readers with systematic understanding of insights, pros and cons of the emerging techniques. We provide a comprehensive survey of the learning to hash framework and representative techniques of various types, including unsupervised, semi-supervised, and supervised. In addition, we also summarize recent hashing approaches utilizing the deep learning models. Finally, we discuss the future direction and trends of research in this area

    From Visual Attributes to Adjectives through Decompositional Distributional Semantics

    Full text link
    As automated image analysis progresses, there is increasing interest in richer linguistic annotation of pictures, with attributes of objects (e.g., furry, brown...) attracting most attention. By building on the recent "zero-shot learning" approach, and paying attention to the linguistic nature of attributes as noun modifiers, and specifically adjectives, we show that it is possible to tag images with attribute-denoting adjectives even when no training data containing the relevant annotation are available. Our approach relies on two key observations. First, objects can be seen as bundles of attributes, typically expressed as adjectival modifiers (a dog is something furry, brown, etc.), and thus a function trained to map visual representations of objects to nominal labels can implicitly learn to map attributes to adjectives. Second, objects and attributes come together in pictures (the same thing is a dog and it is brown). We can thus achieve better attribute (and object) label retrieval by treating images as "visual phrases", and decomposing their linguistic representation into an attribute-denoting adjective and an object-denoting noun. Our approach performs comparably to a method exploiting manual attribute annotation, it outperforms various competitive alternatives in both attribute and object annotation, and it automatically constructs attribute-centric representations that significantly improve performance in supervised object recognition.Comment: accepted at Transactions of the Association for Computational Linguistics (TACL), 3/201

    Weakly Supervised Video Moment Retrieval From Text Queries

    Full text link
    There have been a few recent methods proposed in text to video moment retrieval using natural language queries, but requiring full supervision during training. However, acquiring a large number of training videos with temporal boundary annotations for each text description is extremely time-consuming and often not scalable. In order to cope with this issue, in this work, we introduce the problem of learning from weak labels for the task of text to video moment retrieval. The weak nature of the supervision is because, during training, we only have access to the video-text pairs rather than the temporal extent of the video to which different text descriptions relate. We propose a joint visual-semantic embedding based framework that learns the notion of relevant segments from video using only video-level sentence descriptions. Specifically, our main idea is to utilize latent alignment between video frames and sentence descriptions using Text-Guided Attention (TGA). TGA is then used during the test phase to retrieve relevant moments. Experiments on two benchmark datasets demonstrate that our method achieves comparable performance to state-of-the-art fully supervised approaches.Comment: Revised Table 1 in Page 6, A small bug related to rounding resulted in a slightly improved score in the previous version. Our conclusion remains the same after the updat

    Deep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss

    Full text link
    Deep supervised hashing has emerged as an influential solution to large-scale semantic image retrieval problems in computer vision. In the light of recent progress, convolutional neural network based hashing methods typically seek pair-wise or triplet labels to conduct the similarity preserving learning. However, complex semantic concepts of visual contents are hard to capture by similar/dissimilar labels, which limits the retrieval performance. Generally, pair-wise or triplet losses not only suffer from expensive training costs but also lack in extracting sufficient semantic information. In this regard, we propose a novel deep supervised hashing model to learn more compact class-level similarity preserving binary codes. Our deep learning based model is motivated by deep metric learning that directly takes semantic labels as supervised information in training and generates corresponding discriminant hashing code. Specifically, a novel cubic constraint loss function based on Gaussian distribution is proposed, which preserves semantic variations while penalizes the overlap part of different classes in the embedding space. To address the discrete optimization problem introduced by binary codes, a two-step optimization strategy is proposed to provide efficient training and avoid the problem of gradient vanishing. Extensive experiments on four large-scale benchmark databases show that our model can achieve the state-of-the-art retrieval performance. Moreover, when training samples are limited, our method surpasses other supervised deep hashing methods with non-negligible margins

    Cross-modal Subspace Learning via Kernel Correlation Maximization and Discriminative Structure Preserving

    Full text link
    The measure between heterogeneous data is still an open problem. Many research works have been developed to learn a common subspace where the similarity between different modalities can be calculated directly. However, most of existing works focus on learning a latent subspace but the semantically structural information is not well preserved. Thus, these approaches cannot get desired results. In this paper, we propose a novel framework, termed Cross-modal subspace learning via Kernel correlation maximization and Discriminative structure-preserving (CKD), to solve this problem in two aspects. Firstly, we construct a shared semantic graph to make each modality data preserve the neighbor relationship semantically. Secondly, we introduce the Hilbert-Schmidt Independence Criteria (HSIC) to ensure the consistency between feature-similarity and semantic-similarity of samples. Our model not only considers the inter-modality correlation by maximizing the kernel correlation but also preserves the semantically structural information within each modality. The extensive experiments are performed to evaluate the proposed framework on the three public datasets. The experimental results demonstrated that the proposed CKD is competitive compared with the classic subspace learning methods.Comment: The paper is under consideration at Multimedia Tools and Application

    Supervised Learning of Semantics-Preserving Hash via Deep Convolutional Neural Networks

    Full text link
    This paper presents a simple yet effective supervised deep hash approach that constructs binary hash codes from labeled data for large-scale image search. We assume that the semantic labels are governed by several latent attributes with each attribute on or off, and classification relies on these attributes. Based on this assumption, our approach, dubbed supervised semantics-preserving deep hashing (SSDH), constructs hash functions as a latent layer in a deep network and the binary codes are learned by minimizing an objective function defined over classification error and other desirable hash codes properties. With this design, SSDH has a nice characteristic that classification and retrieval are unified in a single learning model. Moreover, SSDH performs joint learning of image representations, hash codes, and classification in a point-wised manner, and thus is scalable to large-scale datasets. SSDH is simple and can be realized by a slight enhancement of an existing deep architecture for classification; yet it is effective and outperforms other hashing approaches on several benchmarks and large datasets. Compared with state-of-the-art approaches, SSDH achieves higher retrieval accuracy, while the classification performance is not sacrificed.Comment: To appear in IEEE Trans. Pattern Analysis and Machine Intelligenc

    Hashing with Mutual Information

    Full text link
    Binary vector embeddings enable fast nearest neighbor retrieval in large databases of high-dimensional objects, and play an important role in many practical applications, such as image and video retrieval. We study the problem of learning binary vector embeddings under a supervised setting, also known as hashing. We propose a novel supervised hashing method based on optimizing an information-theoretic quantity: mutual information. We show that optimizing mutual information can reduce ambiguity in the induced neighborhood structure in the learned Hamming space, which is essential in obtaining high retrieval performance. To this end, we optimize mutual information in deep neural networks with minibatch stochastic gradient descent, with a formulation that maximally and efficiently utilizes available supervision. Experiments on four image retrieval benchmarks, including ImageNet, confirm the effectiveness of our method in learning high-quality binary embeddings for nearest neighbor retrieval

    Deep Discrete Supervised Hashing

    Full text link
    Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and deep hashing are two representative progresses in supervised hashing. On one hand, hashing is essentially a discrete optimization problem. Hence, utilizing supervised information to directly guide discrete (binary) coding procedure can avoid sub-optimal solution and improve the accuracy. On the other hand, deep hashing, which integrates deep feature learning and hash-code learning into an end-to-end architecture, can enhance the feedback between feature learning and hash-code learning. The key in discrete supervised hashing is to adopt supervised information to directly guide the discrete coding procedure in hashing. The key in deep hashing is to adopt the supervised information to directly guide the deep feature learning procedure. However, there have not existed works which can use the supervised information to directly guide both discrete coding procedure and deep feature learning procedure in the same framework. In this paper, we propose a novel deep hashing method, called deep discrete supervised hashing (DDSH), to address this problem. DDSH is the first deep hashing method which can utilize supervised information to directly guide both discrete coding procedure and deep feature learning procedure, and thus enhance the feedback between these two important procedures. Experiments on three real datasets show that DDSH can outperform other state-of-the-art baselines, including both discrete hashing and deep hashing baselines, for image retrieval

    Deep Ordinal Hashing with Spatial Attention

    Full text link
    Hashing has attracted increasing research attentions in recent years due to its high efficiency of computation and storage in image retrieval. Recent works have demonstrated the superiority of simultaneous feature representations and hash functions learning with deep neural networks. However, most existing deep hashing methods directly learn the hash functions by encoding the global semantic information, while ignoring the local spatial information of images. The loss of local spatial structure makes the performance bottleneck of hash functions, therefore limiting its application for accurate similarity retrieval. In this work, we propose a novel Deep Ordinal Hashing (DOH) method, which learns ordinal representations by leveraging the ranking structure of feature space from both local and global views. In particular, to effectively build the ranking structure, we propose to learn the rank correlation space by exploiting the local spatial information from Fully Convolutional Network (FCN) and the global semantic information from the Convolutional Neural Network (CNN) simultaneously. More specifically, an effective spatial attention model is designed to capture the local spatial information by selectively learning well-specified locations closely related to target objects. In such hashing framework,the local spatial and global semantic nature of images are captured in an end-to-end ranking-to-hashing manner. Experimental results conducted on three widely-used datasets demonstrate that the proposed DOH method significantly outperforms the state-of-the-art hashing methods
    • …
    corecore