3 research outputs found

    An Effective Branch and Bound Algorithm for Minimax Linear Fractional Programming

    Get PDF
    An effective branch and bound algorithm is proposed for globally solving minimax linear fractional programming problem (MLFP). In this algorithm, the lower bounds are computed during the branch and bound search by solving a sequence of linear relaxation programming problems (LRP) of the problem (MLFP), which can be derived by using a new linear relaxation bounding technique, and which can be effectively solved by the simplex method. The proposed branch and bound algorithm is convergent to the global optimal solution of the problem (MLFP) through the successive refinement of the feasible region and solutions of a series of the LRP. Numerical results for several test problems are reported to show the feasibility and effectiveness of the proposed algorithm

    An inexact proximal point method for solving generalized fractional programs

    No full text
    Abstract In this paper, we present several new implementable methods for solving a generalized fractional program with convex data. They are Dinkelbach-type methods where a prox-regularization term is added to avoid the numerical difficulties arising when the solution of the problem is not unique. In these methods, at each iteration a regularized parametric problem is solved inexactly to obtain an approximation of the optimal value of the problem. Since the parametric problem is nonsmooth and convex, we propose to solve it by using a classical bundle method where the parameter is updated after each 'serious step'. We mainly study two kinds of such steps, and we prove the convergence and the rate of convergence of each of the corresponding methods. Finally, we present some numerical experience to illustrate the behavior of the proposed algorithms, and we discuss the practical efficiency of each one
    corecore