3 research outputs found

    An inexact Newton method combined with Hestenes multipliers' scheme for the solution of Karush-Kuhn-Tucker systems

    No full text
    In this work a Newton interior-point method for the solution of Karush-Kuhn-Tucker systems is presented.A crucial feature of this iterative method is the solution, at each iteration, of the inner subproblem. This subproblem is a linear-quadratic programming problem, that can solved approximately by an inner iterative method such as the Hestenes multipliers' method.A deep analysis on the choices of the parameters of the method (perturbation and damping parameters) has been done.The global convergence of the Newton interior-point method is proved when it is viewed as an inexact Newton method for the solution of nonlinear systems with restriction on the sign of some variables.The Newton interior-point method is numerically evaluated on large scale test problems arising from elliptic optimal control problems which show the effectiveness of the approach

    A distributed primal-dual interior-point method for loosely coupled problems using ADMM

    Full text link
    In this paper we propose an efficient distributed algorithm for solving loosely coupled convex optimization problems. The algorithm is based on a primal-dual interior-point method in which we use the alternating direction method of multipliers (ADMM) to compute the primal-dual directions at each iteration of the method. This enables us to join the exceptional convergence properties of primal-dual interior-point methods with the remarkable parallelizability of ADMM. The resulting algorithm has superior computational properties with respect to ADMM directly applied to our problem. The amount of computations that needs to be conducted by each computing agent is far less. In particular, the updates for all variables can be expressed in closed form, irrespective of the type of optimization problem. The most expensive computational burden of the algorithm occur in the updates of the primal variables and can be precomputed in each iteration of the interior-point method. We verify and compare our method to ADMM in numerical experiments.Comment: extended version, 50 pages, 9 figure

    Symbolic approaches and artificial intelligence algorithms for solving multi-objective optimisation problems

    Get PDF
    Problems that have more than one objective function are of great importance in engineering sciences and many other disciplines. This class of problems are known as multi-objective optimisation problems (or multicriteria). The difficulty here lies in the conflict between the various objective functions. Due to this conflict, one cannot find a single ideal solution which simultaneously satisfies all the objectives. But instead one can find the set of Pareto-optimal solutions (Pareto-optimal set) and consequently the Pareto-optimal front is established. Finding these solutions plays an important role in multi-objective optimisation problems and mathematically the problem is considered to be solved when the Pareto-optimal set, i.e. the set of all compromise solutions is found. The Pareto-optimal set may contain information that can help the designer make a decision and thus arrive at better trade-off solutions. The aim of this research is to develop new multi-objective optimisation symbolic algorithms capable of detecting relationship(s) among decision variables that can be used for constructing the analytical formula of Pareto-optimal front based on the extension of the current optimality conditions. A literature survey of theoretical and evolutionary computation techniques for handling multiple objectives, constraints and variable interaction highlights a lack of techniques to handle variable interaction. This research, therefore, focuses on the development of techniques for detecting the relationships between the decision variables (variable interaction) in the presence of multiple objectives and constraints. It attempts to fill the gap in this research by formally extending the theoretical results (optimality conditions). The research then proposes first-order multi-objective symbolic algorithm or MOSA-I and second-order multi-objective symbolic algorithm or MOSA-II that are capable of detecting the variable interaction. The performance of these algorithms is analysed and compared to a current state-of-the-art optimisation algorithm using popular test problems. The performance of the MOSA-II algorithm is finally validated using three appropriately chosen problems from literature. In this way, this research proposes a fully tested and validated methodology for dealing with multi-objective optimisation problems. In conclusion, this research proposes two new symbolic algorithms that are used for identifying the variable interaction responsible for constructing Pareto-optimal front among objectives in multi-objective optimisation problems. This is completed based on a development and relaxation of the first and second-order optimality conditions of Karush-Kuhn-Tucker.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore