1,025 research outputs found

    Approximation Hardness of Graphic TSP on Cubic Graphs

    Get PDF
    We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well as the new inapproximability bounds for the corresponding instances of the (1,2)-TSP. The proof technique uses new modular constructions of simulating gadgets for the restricted cubic and subcubic instances. The modular constructions used in the paper could be also of independent interest

    The Salesman's Improved Tours for Fundamental Classes

    Full text link
    Finding the exact integrality gap α\alpha for the LP relaxation of the metric Travelling Salesman Problem (TSP) has been an open problem for over thirty years, with little progress made. It is known that 4/3α3/24/3 \leq \alpha \leq 3/2, and a famous conjecture states α=4/3\alpha = 4/3. For this problem, essentially two "fundamental" classes of instances have been proposed. This fundamental property means that in order to show that the integrality gap is at most ρ\rho for all instances of metric TSP, it is sufficient to show it only for the instances in the fundamental class. However, despite the importance and the simplicity of such classes, no apparent effort has been deployed for improving the integrality gap bounds for them. In this paper we take a natural first step in this endeavour, and consider the 1/21/2-integer points of one such class. We successfully improve the upper bound for the integrality gap from 3/23/2 to 10/710/7 for a superclass of these points, as well as prove a lower bound of 4/34/3 for the superclass. Our methods involve innovative applications of tools from combinatorial optimization which have the potential to be more broadly applied

    Shorter tours and longer detours: Uniform covers and a bit beyond

    Get PDF
    Motivated by the well known four-thirds conjecture for the traveling salesman problem (TSP), we study the problem of {\em uniform covers}. A graph G=(V,E)G=(V,E) has an α\alpha-uniform cover for TSP (2EC, respectively) if the everywhere α\alpha vector (i.e. {α}E\{\alpha\}^{E}) dominates a convex combination of incidence vectors of tours (2-edge-connected spanning multigraphs, respectively). The polyhedral analysis of Christofides' algorithm directly implies that a 3-edge-connected, cubic graph has a 1-uniform cover for TSP. Seb\H{o} asked if such graphs have (1ϵ)(1-\epsilon)-uniform covers for TSP for some ϵ>0\epsilon > 0. Indeed, the four-thirds conjecture implies that such graphs have 8/9-uniform covers. We show that these graphs have 18/19-uniform covers for TSP. We also study uniform covers for 2EC and show that the everywhere 15/17 vector can be efficiently written as a convex combination of 2-edge-connected spanning multigraphs. For a weighted, 3-edge-connected, cubic graph, our results show that if the everywhere 2/3 vector is an optimal solution for the subtour linear programming relaxation, then a tour with weight at most 27/19 times that of an optimal tour can be found efficiently. Node-weighted, 3-edge-connected, cubic graphs fall into this category. In this special case, we can apply our tools to obtain an even better approximation guarantee. To extend our approach to input graphs that are 2-edge-connected, we present a procedure to decompose an optimal solution for the subtour relaxation for TSP into spanning, connected multigraphs that cover each 2-edge cut an even number of times. Using this decomposition, we obtain a 17/12-approximation algorithm for minimum weight 2-edge-connected spanning subgraphs on subcubic, node-weighted graphs
    corecore