6,160 research outputs found

    An Improved Face Recognition Using Neighborhood Defined Modular Phase Congruency Based Kernel PCA

    Get PDF
    A face recognition algorithm based on NMPKPCA algorithm presented in this paper. The proposed algorithm when compared with conventional Principal component analysis (PCA) algorithms has an improved recognition Rate for face images with large variations in illumination, facial expressions. In this technique, first phase congruency features are extracted from the face image so that effects due to illumination variations are avoided by considering phase component of image. Then, face images are divided into small sub images and the kernel PCA approach is applied to each of these sub images. but, dividing into small or large modules creates some problems in recognition. So a special modulation called neighborhood defined modularization approach presented in this paper, so that effects due to facial variations are avoided. Then, kernel PCA has been applied to each module to extract features. So a feature extraction technique for improving recognition accuracy of a visual image based facial recognition system presented in this paper

    A Subspace Projection Methodology for Nonlinear Manifold Based Face Recognition

    Get PDF
    A novel feature extraction method that utilizes nonlinear mapping from the original data space to the feature space is presented in this dissertation. Feature extraction methods aim to find compact representations of data that are easy to classify. Measurements with similar values are grouped to same category, while those with differing values are deemed to be of separate categories. For most practical systems, the meaningful features of a pattern class lie in a low dimensional nonlinear constraint region (manifold) within the high dimensional data space. A learning algorithm to model this nonlinear region and to project patterns to this feature space is developed. Least squares estimation approach that utilizes interdependency between points in training patterns is used to form the nonlinear region. The proposed feature extraction strategy is employed to improve face recognition accuracy under varying illumination conditions and facial expressions. Though the face features show variations under these conditions, the features of one individual tend to cluster together and can be considered as a neighborhood. Low dimensional representations of face patterns in the feature space may lie in a nonlinear constraint region, which when modeled leads to efficient pattern classification. A feature space encompassing multiple pattern classes can be trained by modeling a separate constraint region for each pattern class and obtaining a mean constraint region by averaging all the individual regions. Unlike most other nonlinear techniques, the proposed method provides an easy intuitive way to place new points onto a nonlinear region in the feature space. The proposed feature extraction and classification method results in improved accuracy when compared to the classical linear representations. Face recognition accuracy is further improved by introducing the concepts of modularity, discriminant analysis and phase congruency into the proposed method. In the modular approach, feature components are extracted from different sub-modules of the images and concatenated to make a single vector to represent a face region. By doing this we are able to extract features that are more representative of the local features of the face. When projected onto an arbitrary line, samples from well formed clusters could produce a confused mixture of samples from all the classes leading to poor recognition. Discriminant analysis aims to find an optimal line orientation for which the data classes are well separated. Experiments performed on various databases to evaluate the performance of the proposed face recognition technique have shown improvement in recognition accuracy, especially under varying illumination conditions and facial expressions. This shows that the integration of multiple subspaces, each representing a part of a higher order nonlinear function, could represent a pattern with variability. Research work is progressing to investigate the effectiveness of subspace projection methodology for building manifolds with other nonlinear functions and to identify the optimum nonlinear function from an object classification perspective

    Neighborhood Defined Feature Selection Strategy for Improved Face Recognition in Different Sensor Modalitie

    Get PDF
    A novel feature selection strategy for improved face recognition in images with variations due to illumination conditions, facial expressions, and partial occlusions is presented in this dissertation. A hybrid face recognition system that uses feature maps of phase congruency and modular kernel spaces is developed. Phase congruency provides a measure that is independent of the overall magnitude of a signal, making it invariant to variations in image illumination and contrast. A novel modular kernel spaces approach is developed and implemented on the phase congruency feature maps. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The unique modularization procedure developed in this research takes into consideration that the facial variations in a real world scenario are confined to local regions. The additional pixel dependencies that are considered based on their importance help in providing additional information for classification. This procedure also helps in robust localization of the variations, further improving classification accuracy. The effectiveness of the new feature selection strategy has been demonstrated by employing it in two specific applications via face authentication in low resolution cameras and face recognition using multiple sensors (visible and infrared). The face authentication system uses low quality images captured by a web camera. The optical sensor of the web camera is very sensitive to environmental illumination variations. It is observed that the feature selection policy overcomes the facial and environmental variations. A methodology based on multiple training images and clustering is also incorporated to overcome the additional challenges of computational efficiency and the subject\u27s non involvement. A multi-sensor image fusion based face recognition methodology that uses the proposed feature selection technique is presented in this dissertation. Research studies have indicated that complementary information from different sensors helps in improving the recognition accuracy compared to individual modalities. A decision level fusion methodology is also developed which provides better performance compared to individual as well as data level fusion modalities. The new decision level fusion technique is also robust to registration discrepancies, which is a very important factor in operational scenarios. Research work is progressing to use the new face recognition technique in multi-view images by employing independent systems for separate views and integrating the results with an appropriate voting procedure

    Improving Facial Analysis and Performance Driven Animation through Disentangling Identity and Expression

    Full text link
    We present techniques for improving performance driven facial animation, emotion recognition, and facial key-point or landmark prediction using learned identity invariant representations. Established approaches to these problems can work well if sufficient examples and labels for a particular identity are available and factors of variation are highly controlled. However, labeled examples of facial expressions, emotions and key-points for new individuals are difficult and costly to obtain. In this paper we improve the ability of techniques to generalize to new and unseen individuals by explicitly modeling previously seen variations related to identity and expression. We use a weakly-supervised approach in which identity labels are used to learn the different factors of variation linked to identity separately from factors related to expression. We show how probabilistic modeling of these sources of variation allows one to learn identity-invariant representations for expressions which can then be used to identity-normalize various procedures for facial expression analysis and animation control. We also show how to extend the widely used techniques of active appearance models and constrained local models through replacing the underlying point distribution models which are typically constructed using principal component analysis with identity-expression factorized representations. We present a wide variety of experiments in which we consistently improve performance on emotion recognition, markerless performance-driven facial animation and facial key-point tracking.Comment: to appear in Image and Vision Computing Journal (IMAVIS

    Learning Local Features Using Boosted Trees for Face Recognition

    Get PDF
    Face recognition is fundamental to a number of significant applications that include but not limited to video surveillance and content based image retrieval. Some of the challenges which make this task difficult are variations in faces due to changes in pose, illumination and deformation. This dissertation proposes a face recognition system to overcome these difficulties. We propose methods for different stages of face recognition which will make the system more robust to these variations. We propose a novel method to perform skin segmentation which is fast and able to perform well under different illumination conditions. We also propose a method to transform face images from any given lighting condition to a reference lighting condition using color constancy. Finally we propose methods to extract local features and train classifiers using these features. We developed two algorithms using these local features, modular PCA (Principal Component Analysis) and boosted tree. We present experimental results which show local features improve recognition accuracy when compared to accuracy of methods which use global features. The boosted tree algorithm recursively learns a tree of strong classifiers by splitting the training data in to smaller sets. We apply this method to learn features on the intrapersonal and extra-personal feature space. Once trained each node of the boosted tree will be a strong classifier. We used this method with Gabor features to perform experiments on benchmark face databases. Results clearly show that the proposed method has better face recognition and verification accuracy than the traditional AdaBoost strong classifier
    • …
    corecore