1,000 research outputs found

    How to project onto extended second order cones

    Get PDF
    The extended second order cones were introduced by S. Z. N\'emeth and G. Zhang in [S. Z. N\'emeth and G. Zhang. Extended Lorentz cones and variational inequalities on cylinders. J. Optim. Theory Appl., 168(3):756-768, 2016] for solving mixed complementarity problems and variational inequalities on cylinders. R. Sznajder in [R. Sznajder. The Lyapunov rank of extended second order cones. Journal of Global Optimization, 66(3):585-593, 2016] determined the automorphism groups and the Lyapunov or bilinearity ranks of these cones. S. Z. N\'emeth and G. Zhang in [S.Z. N\'emeth and G. Zhang. Positive operators of Extended Lorentz cones. arXiv:1608.07455v2, 2016] found both necessary conditions and sufficient conditions for a linear operator to be a positive operator of an extended second order cone. This note will give formulas for projecting onto the extended second order cones. In the most general case the formula will depend on a piecewise linear equation for one real variable which will be solved by using numerical methods

    Block Factor-width-two Matrices and Their Applications to Semidefinite and Sum-of-squares Optimization

    Full text link
    Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In this paper, we introduce a new notion of \emph{block factor-width-two matrices} and build a new hierarchy of inner and outer approximations of the cone of positive semidefinite (PSD) matrices. This notion is a block extension of the standard factor-width-two matrices, and allows for an improved inner-approximation of the PSD cone. In the context of SOS optimization, this leads to a block extension of the \emph{scaled diagonally dominant sum-of-squares (SDSOS)} polynomials. By varying a matrix partition, the notion of block factor-width-two matrices can balance a trade-off between the computation scalability and solution quality for solving semidefinite and SOS optimization. Numerical experiments on large-scale instances confirm our theoretical findings.Comment: 26 pages, 5 figures. Added a new section on the approximation quality analysis using block factor-width-two matrices. Code is available through https://github.com/zhengy09/SDPf

    Computationally efficient approximations of the joint spectral radius

    Full text link
    The joint spectral radius of a set of matrices is a measure of the maximal asymptotic growth rate that can be obtained by forming long products of matrices taken from the set. This quantity appears in a number of application contexts but is notoriously difficult to compute and to approximate. We introduce in this paper a procedure for approximating the joint spectral radius of a finite set of matrices with arbitrary high accuracy. Our approximation procedure is polynomial in the size of the matrices once the number of matrices and the desired accuracy are fixed

    Singular value decay of operator-valued differential Lyapunov and Riccati equations

    Full text link
    We consider operator-valued differential Lyapunov and Riccati equations, where the operators BB and CC may be relatively unbounded with respect to AA (in the standard notation). In this setting, we prove that the singular values of the solutions decay fast under certain conditions. In fact, the decay is exponential in the negative square root if AA generates an analytic semigroup and the range of CC has finite dimension. This extends previous similar results for algebraic equations to the differential case. When the initial condition is zero, we also show that the singular values converge to zero as time goes to zero, with a certain rate that depends on the degree of unboundedness of CC. A fast decay of the singular values corresponds to a low numerical rank, which is a critical feature in large-scale applications. The results reported here provide a theoretical foundation for the observation that, in practice, a low-rank factorization usually exists.Comment: Corrected some misconceptions, which lead to more general results (e.g. exponential stability is no longer required). Also fixed some off-by-one errors, improved the presentation, and added/extended several remarks on possible generalizations. Now 22 pages, 8 figure

    Anosov representations and proper actions

    Full text link
    We establish several characterizations of Anosov representations of word hyperbolic groups into real reductive Lie groups, in terms of a Cartan projection or Lyapunov projection of the Lie group. Using a properness criterion of Benoist and Kobayashi, we derive applications to proper actions on homogeneous spaces of reductive groups.Comment: 73 pages, 4 figures; to appear in Geometry & Topolog

    The triangulation of manifolds

    Full text link
    A mostly expository account of old questions about the relationship between polyhedra and topological manifolds. Topics are old topological results, new gauge theory results (with speculations about next directions), and history of the questions.Comment: 26 pages, 2 figures. version 2: spellings corrected, analytic speculations in 4.8.2 sharpene
    corecore