20 research outputs found

    Non-invasive Diabetes Detection using Gabor Filter: A Comparative Analysis of Different Cameras

    Full text link
    This paper compares and explores the performance of both mobile device camera and laptop camera as convenient tool for capturing images for non-invasive detection of Diabetes Mellitus (DM) using facial block texture features. Participants within age bracket 20 to 79 years old were chosen for the dataset. 12mp and 7mp mobile cameras, and a laptop camera were used to take the photo under normal lighting condition. Extracted facial blocks were classified using k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM). 100 images were captured, preprocessed, filtered using Gabor, and iterated. Performance of the system was measured in terms of accuracy, specificity, and sensitivity. Best performance of 96.7% accuracy, 100% sensitivity, and 93% specificity were achieved from 12mp back camera using SVM with 100 images.Comment: 11 pages, 5 figures, 3 tables, conferenc

    AI in Healthcare: Implications for Family Medicine and Primary Care

    Get PDF
    Artificial Intelligence (AI) has begun to transform industries including healthcare. Unfortunately, Primary Care and the discipline of Family Medicine have tended to lag behind in the implementation of this novel technology. Although the relationship between Family Medicine and AI is in its infancy greater engagement from Primary Care Physician’s (PCP’s) is a must due to the increasing shortage of practitioners. AI has the chance to overturn this problem as well as speed up its development. Considering the vast majority of PCP’s utilize Electronic Medical Records (EMR’s) the field is ripe for innovation. Regrettably, much of the information available remains unused for practice disruption. Primary Care offers a large data platform that can be leveraged with the use of technology to deliver ground-breaking trails forward to provide better comprehensive care for a wide-variety of patients from various backgrounds. The purpose of this chapter is to provide context to AI implementation as it relates to Primary Care and the practice of Family Medicine

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Advanced Sensing and Image Processing Techniques for Healthcare Applications

    Get PDF
    This Special Issue aims to attract the latest research and findings in the design, development and experimentation of healthcare-related technologies. This includes, but is not limited to, using novel sensing, imaging, data processing, machine learning, and artificially intelligent devices and algorithms to assist/monitor the elderly, patients, and the disabled population

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI
    corecore