2,571 research outputs found

    Review on Control of DC Microgrids and Multiple Microgrid Clusters

    Get PDF
    This paper performs an extensive review on control schemes and architectures applied to dc microgrids (MGs). It covers multilayer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects, as well as nonlinear control algorithms. Islanding detection, protection, and MG clusters control are also briefly summarized. All the mentioned issues are discussed with the goal of providing control design guidelines for dc MGs. The future research challenges, from the authors' point of view, are also provided in the final concluding part

    Non-linear model predictive energy management strategies for stand-alone DC microgrids

    Get PDF
    Due to substantial generation and demand fluctuations in stand-alone green micro-grids, energy management strategies (EMSs) are becoming essential for the power sharing purpose and regulating the microgrids voltage. The classical EMSs track the maximum power points (MPPs) of wind and PV branches independently and rely on batteries, as slack terminals, to absorb any possible excess energy. However, in order to protect batteries from being overcharged by realizing the constant current-constant voltage (IU) charging regime as well as to consider the wind turbine operational constraints, more flexible multivariable and non-linear strategies, equipped with a power curtailment feature, are necessary to control microgrids. This dissertation work comprises developing an EMS that dynamically optimises the operation of stand-alone dc microgrids, consisting of wind, photovoltaic (PV), and battery branches, and coordinately manage all energy flows in order to achieve four control objectives: i) regulating dc bus voltage level of microgrids; ii) proportional power sharing between generators as a local droop control realization; iii) charging batteries as close to IU regime as possible; and iv) tracking MPPs of wind and PV branches during their normal operations. Non-linear model predictive control (NMPC) strategies are inherently multivariable and handle constraints and delays. In this thesis, the above mentioned EMS is developed as a NMPC strategy to extract the optimal control signals, which are duty cycles of three DC-DC converters and pitch angle of a wind turbine. Due to bimodal operation and discontinuous differential states of batteries, microgrids belong to the class of hybrid dynamical systems of non-Filippov type. This dissertation work involves a mathematical approximation of stand-alone dc microgrids as complementarity systems (CSs) of Filippov type. The proposed model is used to develop NMPC strategies and to simulate microgrids using Modelica. As part of the modelling efforts, this dissertation work also proposes a novel algorithm to identify an accurate equivalent electrical circuit of PV modules using both standard test condition (STC) and nominal operating cell temperature (NOCT) information provided by manufacturers. Moreover, two separate stochastic models are presented for hourly wind speed and solar irradiance levels

    Distributed Control of Electric Vehicle Charging: Privacy, Performance, and Processing Tradeoffs

    Get PDF
    As global climate change concerns, technological advancements, and economic shifts increase the adoption of electric vehicles, it is vital to study how best to integrate these into our existing energy systems. Electric vehicles (EVs) are on track to quickly become a large factor in the energy grid. If left uncoordinated, the charging of EVs will become a burden on the grid by increasing peak demand and overloading transformers. However, with proper charging control strategies, the problems can be mitigated without the need for expensive capital investments. Distributed control methods are a powerful tool to coordinate the charging, but it will be important to assess the trade-offs between performance, information privacy, and computational speed between different control strategies. This work presents a comprehensive comparison between four distributed control algorithms simulating two case studies constrained by dynamic transformer temperature and current limits. The transformer temperature dynamics are inherently nonlinear and this implementation is contrasted with a piece-wise linear convex relaxation. The more commonly distributed control methods of Dual Decomposition and Alternating Direction Method of Multipliers (ADMM) are compared against a relatively new algorithm, Augmented Lagrangian based Alternating Direction Inexact Newton (ALADIN), as well as against a low-information packetized energy management control scheme (PEM). These algorithms are implemented with a receding horizon in two distinct case studies: a local neighborhood scenario with EVs at each network node and a hub scenario where each node represents a collection of EVs. Finally, these simulation results are compared and analyzed to assess the methods’ performance, privacy, and processing metrics for each case study as no algorithm is found to be optimal for all applications

    Risk-Averse Model Predictive Operation Control of Islanded Microgrids

    Full text link
    In this paper we present a risk-averse model predictive control (MPC) scheme for the operation of islanded microgrids with very high share of renewable energy sources. The proposed scheme mitigates the effect of errors in the determination of the probability distribution of renewable infeed and load. This allows to use less complex and less accurate forecasting methods and to formulate low-dimensional scenario-based optimisation problems which are suitable for control applications. Additionally, the designer may trade performance for safety by interpolating between the conventional stochastic and worst-case MPC formulations. The presented risk-averse MPC problem is formulated as a mixed-integer quadratically-constrained quadratic problem and its favourable characteristics are demonstrated in a case study. This includes a sensitivity analysis that illustrates the robustness to load and renewable power prediction errors

    Design and Advanced Model Predictive Control of Wide Bandgap Based Power Converters

    Get PDF
    The field of power electronics (PE) is experiencing a revolution by harnessing the superior technical characteristics of wide-band gap (WBG) materials, namely Silicone Carbide (SiC) and Gallium Nitride (GaN). Semiconductor devices devised using WBG materials enable high temperature operation at reduced footprint, offer higher blocking voltages, and operate at much higher switching frequencies compared to conventional Silicon (Si) based counterpart. These characteristics are highly desirable as they allow converter designs for challenging applications such as more-electric-aircraft (MEA), electric vehicle (EV) power train, and the like. This dissertation presents designs of a WBG based power converters for a 1 MW, 1 MHz ultra-fast offboard EV charger, and 250 kW integrated modular motor drive (IMMD) for a MEA application. The goal of these designs is to demonstrate the superior power density and efficiency that are achievable by leveraging the power of SiC and GaN semiconductors. Ultra-fast EV charging is expected to alleviate the challenge of range anxiety , which is currently hindering the mass adoption of EVs in automotive market. The power converter design presented in the dissertation utilizes SiC MOSFETs embedded in a topology that is a modification of the conventional three-level (3L) active neutral-point clamped (ANPC) converter. A novel phase-shifted modulation scheme presented alongside the design allows converter operation at switching frequency of 1 MHz, thereby miniaturizing the grid-side filter to enhance the power density. IMMDs combine the power electronic drive and the electric machine into a single unit, and thus is an efficient solution to realize the electrification of aircraft. The IMMD design presented in the dissertation uses GaN devices embedded in a stacked modular full-bridge converter topology to individually drive each of the motor coils. Various issues and solutions, pertaining to paralleling of GaN devices to meet the high current requirements are also addressed in the thesis. Experimental prototypes of the SiC ultra-fast EV charger and GaN IMMD were built, and the results confirm the efficacy of the proposed designs. Model predictive control (MPC) is a nonlinear control technique that has been widely investigated for various power electronic applications in the past decade. MPC exploits the discrete nature of power converters to make control decisions using a cost function. The controller offers various advantages over, e.g., linear PI controllers in terms of fast dynamic response, identical performance at a reduced switching frequency, and ease of applicability to MIMO applications. This dissertation also investigates MPC for key power electronic applications, such as, grid-tied VSC with an LCL filter and multilevel VSI with an LC filter. By implementing high performance MPC controllers on WBG based power converters, it is possible to formulate designs capable of fast dynamic tracking, high power operation at reduced THD, and increased power density

    Port-Hamiltonian model and load balancing for DC-microgrid lift systems

    No full text
    This paper considers the problem of modeling a multi-source lift system where power balancing-realized through a power DC bus-should be optimally controlled. The system includes the mechanical part, a Salient Permanent Magnet Synchronous Machine (SPMSM), a battery energy storage unit, a super-capacitor, a solar panel (PV) generation unit as well as the corresponding converters to DC-links. This microgrid is connected to a three-phase utility (external) grid. A port-Hamiltonian model is proposed for the system. It includes the descriptions of nonlinear characteristics and the limitations for each components as well as some typical operation demands. Then, different optimization objectives are formulated in view of an efficient energy management within the microgrid system

    TOWARDS OPTIMAL OPERATION AND CONTROL OF EMERGING ELECTRIC DISTRIBUTION NETWORKS

    Get PDF
    The growing integration of power-electronics converters enabled components causes low inertia in the evolving electric distribution networks, which also suffer from uncertainties due to renewable energy sources, electric demands, and anomalies caused by physical or cyber attacks, etc. These issues are addressed in this dissertation. First, a virtual synchronous generator (VSG) solution is provided for solar photovoltaics (PVs) to address the issues of low inertia and system uncertainties. Furthermore, for a campus AC microgrid, coordinated control of the PV-VSG and a combined heat and power (CHP) unit is proposed and validated. Second, for islanded AC microgrids composed of SGs and PVs, an improved three-layer predictive hierarchical power management framework is presented to provide economic operation and cyber-physical security while reducing uncertainties. This scheme providessuperior frequency regulation capability and maintains low system operating costs. Third, a decentralized strategy for coordinating adaptive controls of PVs and battery energy storage systems (BESSs) in islanded DC nanogrids is presented. Finally, for transient stability evaluation (TSE) of emerging electric distribution networks dominated by EV supercharging stations, a data-driven region of attraction (ROA) estimation approach is presented. The proposed data-driven method is more computationally efficient than traditional model-based methods, and it also allows for real-time ROA estimation for emerging electric distribution networks with complex dynamics
    corecore