464,146 research outputs found

    Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity

    Get PDF
    Recent developments in neuromorphic hardware engineering make mixed-signal VLSI neural network models promising candidates for neuroscientific research tools and massively parallel computing devices, especially for tasks which exhaust the computing power of software simulations. Still, like all analog hardware systems, neuromorphic models suffer from a constricted configurability and production-related fluctuations of device characteristics. Since also future systems, involving ever-smaller structures, will inevitably exhibit such inhomogeneities on the unit level, self-regulation properties become a crucial requirement for their successful operation. By applying a cortically inspired self-adjusting network architecture, we show that the activity of generic spiking neural networks emulated on a neuromorphic hardware system can be kept within a biologically realistic firing regime and gain a remarkable robustness against transistor-level variations. As a first approach of this kind in engineering practice, the short-term synaptic depression and facilitation mechanisms implemented within an analog VLSI model of I&F neurons are functionally utilized for the purpose of network level stabilization. We present experimental data acquired both from the hardware model and from comparative software simulations which prove the applicability of the employed paradigm to neuromorphic VLSI devices

    Punishment diminishes the benefits of network reciprocity in social dilemma experiments

    Get PDF
    Network reciprocity has been widely advertised in theoretical studies as one of the basic cooperation-promoting mechanisms, but experimental evidence favoring this type of reciprocity was published only recently. When organized in an unchanging network of social contacts, human subjects cooperate provided the following strict condition is satisfied: The benefit of cooperation must outweigh the total cost of cooperating with all neighbors. In an attempt to relax this condition, we perform social dilemma experiments wherein network reciprocity is aided with another theoretically hypothesized cooperation-promoting mechanism—costly punishment. The results reveal how networks promote and stabilize cooperation. This stabilizing effect is stronger in a smaller-size neighborhood, as expected from theory and experiments. Contrary to expectations, punishment diminishes the benefits of network reciprocity by lowering assortment, payoff per round, and award for cooperative behavior. This diminishing effect is stronger in a larger-size neighborhood. An immediate implication is that the psychological effects of enduring punishment override the rational response anticipated in quantitative models of cooperation in networks.We thank J. H. Lee for useful discussions. M.J. and Z.W. were, respectively, supported by the Research Grant Program of Inamori Foundation and the Chinese Young 1000 Talents Plan. B.P. received support from the Slovenian Research Agency (ARRS) and the Croatian Science Foundation through Projects J5-8236 and 5349, respectively. S.H. thanks the Israel-Italian collaborative project Network Cyber Security (NECST), Israel Science Foundation, Office of Naval Research (ONR), Japan Science Foundation, and the US-Israel Binational Science Foundation and the US National Science Foundation (BSF-NSF) for financial support. The Boston University Center for Polymer Studies is supported by NSF Grants PHY-1505000, CMMI-1125290, and CHE-1213217, by Defense Threat Reduction Agency (DTRA) Grant HDTRA1-14-1-0017, and by Department of Energy (DOE) Contract DE-AC07-05Id14517. (Inamori Foundation; Chinese Young 1000 Talents Plan; J5-8236 - Slovenian Research Agency (ARRS); 5349 - Croatian Science Foundation; Israel-Italian collaborative project Network Cyber Security (NECST); Israel Science Foundation; Office of Naval Research (ONR); Japan Science Foundation; US-Israel Binational Science Foundation; US National Science Foundation (BSF-NSF); PHY-1505000 - NSF; CMMI-1125290 - NSF; CHE-1213217 - NSF; HDTRA1-14-1-0017 - Defense Threat Reduction Agency (DTRA); DE-AC07-05Id14517 - Department of Energy (DOE))Published versio

    Modeling rhythmic patterns in the hippocampus

    Full text link
    We investigate different dynamical regimes of neuronal network in the CA3 area of the hippocampus. The proposed neuronal circuit includes two fast- and two slowly-spiking cells which are interconnected by means of dynamical synapses. On the individual level, each neuron is modeled by FitzHugh-Nagumo equations. Three basic rhythmic patterns are observed: gamma-rhythm in which the fast neurons are uniformly spiking, theta-rhythm in which the individual spikes are separated by quiet epochs, and theta/gamma rhythm with repeated patches of spikes. We analyze the influence of asymmetry of synaptic strengths on the synchronization in the network and demonstrate that strong asymmetry reduces the variety of available dynamical states. The model network exhibits multistability; this results in occurrence of hysteresis in dependence on the conductances of individual connections. We show that switching between different rhythmic patterns in the network depends on the degree of synchronization between the slow cells.Comment: 10 pages, 9 figure

    MISEP - Linear and Nonlinear ICA Based on Mutual Information

    Get PDF
    MISEP is a method for linear and nonlinear ICA, that is able to handle a large variety of situations. It is an extension of the well known INFOMAX method, in two directions: (1) handling of nonlinear mixtures, and (2) learning the nonlinearities to be used at the outputs. The method can therefore separate linear and nonlinear mixtures of components with a wide range of statistical distributions. This paper presents the basis of the MISEP method, as well as experimental results obtained with it. The results illustrate the applicability of the method to various situations, and show that, although the nonlinear blind separation problem is ill-posed, use of regularization allows the problem to be solved when the nonlinear mixture is relatively smooth

    Portfolio selection using neural networks

    Full text link
    In this paper we apply a heuristic method based on artificial neural networks in order to trace out the efficient frontier associated to the portfolio selection problem. We consider a generalization of the standard Markowitz mean-variance model which includes cardinality and bounding constraints. These constraints ensure the investment in a given number of different assets and limit the amount of capital to be invested in each asset. We present some experimental results obtained with the neural network heuristic and we compare them to those obtained with three previous heuristic methods.Comment: 12 pages; submitted to "Computers & Operations Research
    • …
    corecore