11,327 research outputs found

    Agent-based transportation planning compared with scheduling heuristics

    Get PDF
    Here we consider the problem of dynamically assigning vehicles to transportation orders that have di¤erent time windows and should be handled in real time. We introduce a new agent-based system for the planning and scheduling of these transportation networks. Intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. We use simulation to compare the on-time delivery percentage and the vehicle utilization of an agent-based planning system to a traditional system based on OR heuristics (look-ahead rules, serial scheduling). Numerical experiments show that a properly designed multi-agent system may perform as good as or even better than traditional methods

    Maximizing the Probability of Delivery of Multipoint Relay Broadcast Protocol in Wireless Ad Hoc Networks with a Realistic Physical Layer

    Get PDF
    It is now commonly accepted that the unit disk graph used to model the physical layer in wireless networks does not reflect real radio transmissions, and that the lognormal shadowing model better suits to experimental simulations. Previous work on realistic scenarios focused on unicast, while broadcast requirements are fundamentally different and cannot be derived from unicast case. Therefore, broadcast protocols must be adapted in order to still be efficient under realistic assumptions. In this paper, we study the well-known multipoint relay protocol (MPR). In the latter, each node has to choose a set of neighbors to act as relays in order to cover the whole 2-hop neighborhood. We give experimental results showing that the original method provided to select the set of relays does not give good results with the realistic model. We also provide three new heuristics in replacement and their performances which demonstrate that they better suit to the considered model. The first one maximizes the probability of correct reception between the node and the considered relays multiplied by their coverage in the 2-hop neighborhood. The second one replaces the coverage by the average of the probabilities of correct reception between the considered neighbor and the 2-hop neighbors it covers. Finally, the third heuristic keeps the same concept as the second one, but tries to maximize the coverage level of the 2-hop neighborhood: 2-hop neighbors are still being considered as uncovered while their coverage level is not higher than a given coverage threshold, many neighbors may thus be selected to cover the same 2-hop neighbors

    Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks

    Get PDF
    This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the NP-complete multicast routing problem (MRP). The main contribution is the extension of PSO from continuous domain to the binary or discrete domain. Firstly, a novel bi-velocity strategy is developed to represent possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP where 1 stands for a node being selected to construct the multicast tree while 0 stands for being otherwise. Secondly, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the OR-library (Operation Research Library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly as it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on GA, ACO, and PSO

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore