4 research outputs found

    An exact representation of the fermion dynamics in terms of Poisson processes and its connection with Monte Carlo algorithms

    Full text link
    We present a simple derivation of a Feynman-Kac type formula to study fermionic systems. In this approach the real time or the imaginary time dynamics is expressed in terms of the evolution of a collection of Poisson processes. A computer implementation of this formula leads to a family of algorithms parametrized by the values of the jump rates of the Poisson processes. From these an optimal algorithm can be chosen which coincides with the Green Function Monte Carlo method in the limit when the latter becomes exact.Comment: 4 pages, 1 PostScript figure, REVTe

    Phase transitions and gaps in quantum random energy models

    Full text link
    By using a previously established exact characterization of the ground state of random potential systems in the thermodynamic limit, we determine the ground and first excited energy levels of quantum random energy models, discrete and continuous. We rigorously establish the existence of a universal first order quantum phase transition, obeyed by both the ground and the first excited states. The presence of an exponentially vanishing minimal gap at the transition is general but, quite interestingly, the gap averaged over the realizations of the random potential is finite. This fact leaves still open the chance for some effective quantum annealing algorithm, not necessarily based on a quantum adiabatic scheme.Comment: 8 pages, 4 figure

    Phase transitions and gaps in quantum random energy models

    Get PDF
    By using a previously established exact characterization of the ground state of random potential systems in the thermodynamic limit, we determine the ground and first excited energy levels of quantum random energy models, discrete and continuous. We rigorously establish the existence of a universal first order quantum phase transition, obeyed by both the ground and the first excited states. The presence of an exponentially vanishing minimal gap at the transition is general but, quite interestingly, the gap averaged over the realizations of the random potential is finite. This fact leaves still open the chance for some effective quantum annealing algorithm, not necessarily based on a quantum adiabatic scheme.Comment: 8 pages, 4 figure
    corecore