4,778 research outputs found

    WKB Approximation to the Power Wall

    Full text link
    We present a semiclassical analysis of the quantum propagator of a particle confined on one side by a steeply, monotonically rising potential. The models studied in detail have potentials proportional to xαx^{\alpha} for x>0x>0; the limit α→∞\alpha\to\infty would reproduce a perfectly reflecting boundary, but at present we concentrate on the cases α=1\alpha =1 and 2, for which exact solutions in terms of well known functions are available for comparison. We classify the classical paths in this system by their qualitative nature and calculate the contributions of the various classes to the leading-order semiclassical approximation: For each classical path we find the action SS, the amplitude function AA and the Laplacian of AA. (The Laplacian is of interest because it gives an estimate of the error in the approximation and is needed for computing higher-order approximations.) The resulting semiclassical propagator can be used to rewrite the exact problem as a Volterra integral equation, whose formal solution by iteration (Neumann series) is a semiclassical, not perturbative, expansion. We thereby test, in the context of a concrete problem, the validity of the two technical hypotheses in a previous proof of the convergence of such a Neumann series in the more abstract setting of an arbitrary smooth potential. Not surprisingly, we find that the hypotheses are violated when caustics develop in the classical dynamics; this opens up the interesting future project of extending the methods to momentum space.Comment: 30 pages, 8 figures. Minor corrections in v.

    On cscK resolutions of conically singular cscK varieties

    Full text link
    In this note we discuss the problem of resolving conically singular cscK varieties to construct smooth cscK manifolds, showing a glueing result for (some) crepant resolutions of cscK varieties with discrete automorphism groups

    Bounding the Heat Trace of a Calabi-Yau Manifold

    Get PDF
    The SCHOK bound states that the number of marginal deformations of certain two-dimensional conformal field theories is bounded linearly from above by the number of relevant operators. In conformal field theories defined via sigma models into Calabi-Yau manifolds, relevant operators can be estimated, in the point-particle approximation, by the low-lying spectrum of the scalar Laplacian on the manifold. In the strict large volume limit, the standard asymptotic expansion of Weyl and Minakshisundaram-Pleijel diverges with the higher-order curvature invariants. We propose that it would be sufficient to find an a priori uniform bound on the trace of the heat kernel for large but finite volume. As a first step in this direction, we then study the heat trace asymptotics, as well as the actual spectrum of the scalar Laplacian, in the vicinity of a conifold singularity. The eigenfunctions can be written in terms of confluent Heun functions, the analysis of which gives evidence that regions of large curvature will not prevent the existence of a bound of this type. This is also in line with general mathematical expectations about spectral continuity for manifolds with conical singularities. A sharper version of our results could, in combination with the SCHOK bound, provide a basis for a global restriction on the dimension of the moduli space of Calabi-Yau manifolds.Comment: 32 pages, 3 figure

    Diffractive Theorems for the Wave Equation with Inverse Square Potential

    Full text link
    We first establish the presence of a diffractive front in the fundamental solution of the wave operator with a diract delta intial condition in two dimensional euclidean space caused by the potentials perturbation on the spherical laplacian. This motivates a result which restricts the propagation of singularities for the wave operator with a more general potential to precisely these diffractive fronts higher dimensional euclidean spaces. This is proven using microlocal energy estimates.Comment: 41 pages, 6 figure

    Quantum ergodicity and quantum limits for sub-Riemannian Laplacians

    Get PDF
    This paper is a proceedings version of \cite{CHT-I}, in which we state a Quantum Ergodicity (QE) theorem on a 3D contact manifold, and in which we establish some properties of the Quantum Limits (QL). We consider a sub-Riemannian (sR) metric on a compact 3D manifold with an oriented contact distribution. There exists a privileged choice of the contact form, with an associated Reeb vector field and a canonical volume form that coincides with the Popp measure. We state a QE theorem for the eigenfunctions of any associated sR Laplacian, under the assumption that the Reeb flow is ergodic. The limit measure is given by the normalized canonical contact measure. To our knowledge, this is the first extension of the usual Schnirelman theorem to a hypoelliptic operator. We provide as well a decomposition result of QL's, which is valid without any ergodicity assumption. We explain the main steps of the proof, and we discuss possible extensions to other sR geometries.Comment: Appears in S{\'e}minaire Laurent Schwartz - EDP et applications, 2015, Palaiseau, France. 2015. arXiv admin note: text overlap with arXiv:1504.0711
    • …
    corecore