4 research outputs found

    An exact approach for the 0-1 knapsack problem with setups

    Get PDF
    We consider the 0-1 Knapsack Problem with Setups. We propose an exact approach which handles the structure of the ILP formulation of the problem. It relies on partitioning the variables set into two levels and exploiting this partitioning. The proposed approach favorably compares to the algorithms in literature and to solver CPLEX 12.5 applied to the ILP formulation. It turns out to be very effective and capable of solving to optimality, within limited CPU time, all instances with up to 100,000 variables

    Knapsack Problems with Side Constraints

    Get PDF
    The thesis considers a specific class of resource allocation problems in Combinatorial Optimization: the Knapsack Problems. These are paradigmatic NP-hard problems where a set of items with given profits and weights is available. The aim is to select a subset of the items in order to maximize the total profit without exceeding a known knapsack capacity. In the classical 0-1 Knapsack Problem (KP), each item can be picked at most once. The focus of the thesis is on four generalizations of KP involving side constraints beyond the capacity bound. More precisely, we provide solution approaches and insights for the following problems: The Knapsack Problem with Setups; the Collapsing Knapsack Problem; the Penalized Knapsack Problem; the Incremental Knapsack Problem. These problems reveal challenging research topics with many real-life applications. The scientific contributions we provide are both from a theoretical and a practical perspective. On the one hand, we give insights into structural elements and properties of the problems and derive a series of approximation results for some of them. On the other hand, we offer valuable solution approaches for direct applications of practical interest or when the problems considered arise as sub-problems in broader contexts
    corecore