21,419 research outputs found

    An exact algorithm for solving difficult detailed routing problems

    Get PDF
    Channel routing is an NP-complete problem. Therefore, it is likely that there is no efficient algorithm solving this problem exactly.In this paper, we show that channel routing is a fixed-parameter tractable problem and that we can find a solution in linear time for a fixed channel width.We implemented our approach for the restricted layer model. The algorithm finds an optimal route for channels with up to 13 tracks within minutes or up to 11 tracks within seconds.Such narrow channels occur for example as a leaf problem of hierarchical routers or within standard cell generators

    Two-echelon freight transport optimisation: unifying concepts via a systematic review

    Get PDF
    Multi-echelon distribution schemes are one of the most common strategies adopted by the transport companies in an aim of cost reduction, but their identification in scientific literature is not always easy due to a lack of unification. This paper presents the main concepts of two-echelon distribution via a systematic review, in the specific a meta-narrative analysis, in order to identify and unify the main concepts, issues and methods that can be helpful for scientists and transport practitioners. The problem of system cost optimisation in two-echelon freight transport systems is defined. Moreover, the main variants are synthetically presented and discussed. Finally, future research directions are proposed.location-routing problems, multi-echelon distribution, cross-docking, combinatorial optimisation, systematic review.

    A fast ILP-based Heuristic for the robust design of Body Wireless Sensor Networks

    Full text link
    We consider the problem of optimally designing a body wireless sensor network, while taking into account the uncertainty of data generation of biosensors. Since the related min-max robustness Integer Linear Programming (ILP) problem can be difficult to solve even for state-of-the-art commercial optimization solvers, we propose an original heuristic for its solution. The heuristic combines deterministic and probabilistic variable fixing strategies, guided by the information coming from strengthened linear relaxations of the ILP robust model, and includes a very large neighborhood search for reparation and improvement of generated solutions, formulated as an ILP problem solved exactly. Computational tests on realistic instances show that our heuristic finds solutions of much higher quality than a state-of-the-art solver and than an effective benchmark heuristic.Comment: This is the authors' final version of the paper published in G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp. 1-17, 2017. DOI: 10.1007/978-3-319-55849-3\_16. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-55849-3_1

    Computing Bounds on Network Capacity Regions as a Polytope Reconstruction Problem

    Get PDF
    We define a notion of network capacity region of networks that generalizes the notion of network capacity defined by Cannons et al. and prove its notable properties such as closedness, boundedness and convexity when the finite field is fixed. We show that the network routing capacity region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. We define the semi-network linear coding capacity region, with respect to a fixed finite field, that inner bounds the corresponding network linear coding capacity region, show that it is a computable rational polytope, and provide exact algorithms and approximation heuristics. We show connections between computing these regions and a polytope reconstruction problem and some combinatorial optimization problems, such as the minimum cost directed Steiner tree problem. We provide an example to illustrate our results. The algorithms are not necessarily polynomial-time.Comment: Appeared in the 2011 IEEE International Symposium on Information Theory, 5 pages, 1 figur

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    A study on exponential-size neighborhoods for the bin packing problem with conflicts

    Full text link
    We propose an iterated local search based on several classes of local and large neighborhoods for the bin packing problem with conflicts. This problem, which combines the characteristics of both bin packing and vertex coloring, arises in various application contexts such as logistics and transportation, timetabling, and resource allocation for cloud computing. We introduce O(1)O(1) evaluation procedures for classical local-search moves, polynomial variants of ejection chains and assignment neighborhoods, an adaptive set covering-based neighborhood, and finally a controlled use of 0-cost moves to further diversify the search. The overall method produces solutions of good quality on the classical benchmark instances and scales very well with an increase of problem size. Extensive computational experiments are conducted to measure the respective contribution of each proposed neighborhood. In particular, the 0-cost moves and the large neighborhood based on set covering contribute very significantly to the search. Several research perspectives are open in relation to possible hybridizations with other state-of-the-art mathematical programming heuristics for this problem.Comment: 26 pages, 8 figure

    A large neighbourhood based heuristic for two-echelon routing problems

    Full text link
    In this paper, we address two optimisation problems arising in the context of city logistics and two-level transportation systems. The two-echelon vehicle routing problem and the two-echelon location routing problem seek to produce vehicle itineraries to deliver goods to customers, with transits through intermediate facilities. To efficiently solve these problems, we propose a hybrid metaheuristic which combines enumerative local searches with destroy-and-repair principles, as well as some tailored operators to optimise the selections of intermediate facilities. We conduct extensive computational experiments to investigate the contribution of these operators to the search performance, and measure the performance of the method on both problem classes. The proposed algorithm finds the current best known solutions, or better ones, for 95% of the two-echelon vehicle routing problem benchmark instances. Overall, for both problems, it achieves high-quality solutions within short computing times. Finally, for future reference, we resolve inconsistencies between different versions of benchmark instances, document their differences, and provide them all online in a unified format
    • …
    corecore