3,164 research outputs found

    Vision Based Collaborative Localization and Path Planning for Micro Aerial Vehicles

    Get PDF
    Autonomous micro aerial vehicles (MAV) have gained immense popularity in both the commercial and research worlds over the last few years. Due to their small size and agility, MAVs are considered to have great potential for civil and industrial tasks such as photography, search and rescue, exploration, inspection and surveillance. Autonomy on MAVs usually involves solving the major problems of localization and path planning. While GPS is a popular choice for localization for many MAV platforms today, it suffers from issues such as inaccurate estimation around large structures, and complete unavailability in remote areas/indoor scenarios. From the alternative sensing mechanisms, cameras arise as an attractive choice to be an onboard sensor due to the richness of information captured, along with small size and inexpensiveness. Another consideration that comes into picture for micro aerial vehicles is the fact that these small platforms suffer from inability to fly for long amounts of time or carry heavy payload, scenarios that can be solved by allocating a group, or a swarm of MAVs to perform a task than just one. Collaboration between multiple vehicles allows for better accuracy of estimation, task distribution and mission efficiency. Combining these rationales, this dissertation presents collaborative vision based localization and path planning frameworks. Although these were created as two separate steps, the ideal application would contain both of them as a loosely coupled localization and planning algorithm. A forward-facing monocular camera onboard each MAV is considered as the sole sensor for computing pose estimates. With this minimal setup, this dissertation first investigates methods to perform feature-based localization, with the possibility of fusing two types of localization data: one that is computed onboard each MAV, and the other that comes from relative measurements between the vehicles. Feature based methods were preferred over direct methods for vision because of the relative ease with which tangible data packets can be transferred between vehicles, and because feature data allows for minimal data transfer compared to large images. Inspired by techniques from multiple view geometry and structure from motion, this localization algorithm presents a decentralized full 6-degree of freedom pose estimation method complete with a consistent fusion methodology to obtain robust estimates only at discrete instants, thus not requiring constant communication between vehicles. This method was validated on image data obtained from high fidelity simulations as well as real life MAV tests. These vision based collaborative constraints were also applied to the problem of path planning with a focus on performing uncertainty-aware planning, where the algorithm is responsible for generating not only a valid, collision-free path, but also making sure that this path allows for successful localization throughout. As joint multi-robot planning can be a computationally intractable problem, planning was divided into two steps from a vision-aware perspective. As the first step for improving localization performance is having access to a better map of features, a next-best-multi-view algorithm was developed which can compute the best viewpoints for multiple vehicles that can improve an existing sparse reconstruction. This algorithm contains a cost function containing vision-based heuristics that determines the quality of expected images from any set of viewpoints; which is minimized through an efficient evolutionary strategy known as Covariance Matrix Adaption (CMA-ES) that can handle very high dimensional sample spaces. In the second step, a sampling based planner called Vision-Aware RRT* (VA-RRT*) was developed which includes similar vision heuristics in an information gain based framework in order to drive individual vehicles towards areas that can benefit feature tracking and thus localization. Both steps of the planning framework were tested and validated using results from simulation

    Augmenting Vision-Based Human Pose Estimation with Rotation Matrix

    Full text link
    Fitness applications are commonly used to monitor activities within the gym, but they often fail to automatically track indoor activities inside the gym. This study proposes a model that utilizes pose estimation combined with a novel data augmentation method, i.e., rotation matrix. We aim to enhance the classification accuracy of activity recognition based on pose estimation data. Through our experiments, we experiment with different classification algorithms along with image augmentation approaches. Our findings demonstrate that the SVM with SGD optimization, using data augmentation with the Rotation Matrix, yields the most accurate results, achieving a 96% accuracy rate in classifying five physical activities. Conversely, without implementing the data augmentation techniques, the baseline accuracy remains at a modest 64%.Comment: 24 page

    Learning to Generate 3D Training Data

    Full text link
    Human-level visual 3D perception ability has long been pursued by researchers in computer vision, computer graphics, and robotics. Recent years have seen an emerging line of works using synthetic images to train deep networks for single image 3D perception. Synthetic images rendered by graphics engines are a promising source for training deep neural networks because it comes with perfect 3D ground truth for free. However, the 3D shapes and scenes to be rendered are largely made manual. Besides, it is challenging to ensure that synthetic images collected this way can help train a deep network to perform well on real images. This is because graphics generation pipelines require numerous design decisions such as the selection of 3D shapes and the placement of the camera. In this dissertation, we propose automatic generation pipelines of synthetic data that aim to improve the task performance of a trained network. We explore both supervised and unsupervised directions for automatic optimization of 3D decisions. For supervised learning, we demonstrate how to optimize 3D parameters such that a trained network can generalize well to real images. We first show that we can construct a pure synthetic 3D shape to achieve state-of-the-art performance on a shape-from-shading benchmark. We further parameterize the decisions as a vector and propose a hybrid gradient approach to efficiently optimize the vector towards usefulness. Our hybrid gradient is able to outperform classic black-box approaches on a wide selection of 3D perception tasks. For unsupervised learning, we propose a novelty metric for 3D parameter evolution based on deep autoregressive models. We show that without any extrinsic motivation, the novelty computed from autoregressive models alone is helpful. Our novelty metric can consistently encourage a random synthetic generator to produce more useful training data for downstream 3D perception tasks.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163240/1/ydawei_1.pd

    Bio-inspired vision-based leader-follower formation flying in the presence of delays

    Get PDF
    Flocking starlings at dusk are known for the mesmerizing and intricate shapes they generate, as well as how fluid these shapes change. They seem to do this effortlessly. Real-life vision-based flocking has not been achieved in micro-UAVs (micro Unmanned Aerial Vehicles) to date. Towards this goal, we make three contributions in this paper: (i) we used a computational approach to develop a bio-inspired architecture for vision-based Leader-Follower formation flying on two micro-UAVs. We believe that the minimal computational cost of the resulting algorithm makes it suitable for object detection and tracking during high-speed flocking; (ii) we show that provided delays in the control loop of a micro-UAV are below a critical value, Kalman filter-based estimation algorithms are not required to achieve Leader-Follower formation flying; (iii) unlike previous approaches, we do not use external observers, such as GPS signals or synchronized communication with flock members. These three contributions could be useful in achieving vision-based flocking in GPS-denied environments on computationally-limited agents
    • …
    corecore