6,277 research outputs found

    Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory

    Full text link
    Land cover classification using multispectral satellite image is a very challenging task with numerous practical applications. We propose a multi-stage classifier that involves fuzzy rule extraction from the training data and then generation of a possibilistic label vector for each pixel using the fuzzy rule base. To exploit the spatial correlation of land cover types we propose four different information aggregation methods which use the possibilistic class label of a pixel and those of its eight spatial neighbors for making the final classification decision. Three of the aggregation methods use Dempster-Shafer theory of evidence while the remaining one is modeled after the fuzzy k-NN rule. The proposed methods are tested with two benchmark seven channel satellite images and the results are found to be quite satisfactory. They are also compared with a Markov random field (MRF) model-based contextual classification method and found to perform consistently better.Comment: 14 pages, 2 figure

    Designing labeled graph classifiers by exploiting the R\'enyi entropy of the dissimilarity representation

    Full text link
    Representing patterns as labeled graphs is becoming increasingly common in the broad field of computational intelligence. Accordingly, a wide repertoire of pattern recognition tools, such as classifiers and knowledge discovery procedures, are nowadays available and tested for various datasets of labeled graphs. However, the design of effective learning procedures operating in the space of labeled graphs is still a challenging problem, especially from the computational complexity viewpoint. In this paper, we present a major improvement of a general-purpose classifier for graphs, which is conceived on an interplay between dissimilarity representation, clustering, information-theoretic techniques, and evolutionary optimization algorithms. The improvement focuses on a specific key subroutine devised to compress the input data. We prove different theorems which are fundamental to the setting of the parameters controlling such a compression operation. We demonstrate the effectiveness of the resulting classifier by benchmarking the developed variants on well-known datasets of labeled graphs, considering as distinct performance indicators the classification accuracy, computing time, and parsimony in terms of structural complexity of the synthesized classification models. The results show state-of-the-art standards in terms of test set accuracy and a considerable speed-up for what concerns the computing time.Comment: Revised versio

    Optimal Renormalization Group Transformation from Information Theory

    Full text link
    Recently a novel real-space RG algorithm was introduced, identifying the relevant degrees of freedom of a system by maximizing an information-theoretic quantity, the real-space mutual information (RSMI), with machine learning methods. Motivated by this, we investigate the information theoretic properties of coarse-graining procedures, for both translationally invariant and disordered systems. We prove that a perfect RSMI coarse-graining does not increase the range of interactions in the renormalized Hamiltonian, and, for disordered systems, suppresses generation of correlations in the renormalized disorder distribution, being in this sense optimal. We empirically verify decay of those measures of complexity, as a function of information retained by the RG, on the examples of arbitrary coarse-grainings of the clean and random Ising chain. The results establish a direct and quantifiable connection between properties of RG viewed as a compression scheme, and those of physical objects i.e. Hamiltonians and disorder distributions. We also study the effect of constraints on the number and type of coarse-grained degrees of freedom on a generic RG procedure.Comment: Updated manuscript with new results on disordered system

    ENTROPY-BASED ESTIMATION AND INFERENCE IN BINARY RESPONSE MODELS UNDER ENDOGENEITY

    Get PDF
    This paper considers estimation and inference for the binary response model in the case where endogenous variables are included as arguments of the unknown link function. Semiparametric estimators are proposed that avoid the parametric assumptions underlying the likelihood approach as well as the loss of precision when using nonparametric estimation. Suggestions are made for how the utility maximization decision model can be altered to permit attributes to vary across alternatives.Research Methods/ Statistical Methods,
    • 

    corecore