4 research outputs found

    An enhanced partial order curve comparison algorithm and its application to analyzing protein folding trajectories

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding how proteins fold is essential to our quest in discovering how life works at the molecular level. Current computation power enables researchers to produce a huge amount of folding simulation data. Hence there is a pressing need to be able to interpret and identify novel folding features from them.</p> <p>Results</p> <p>In this paper, we model each folding trajectory as a multi-dimensional curve. We then develop an effective multiple curve comparison (MCC) algorithm, called the <it>enhanced partial order (EPO) </it>algorithm, to extract features from a set of diverse folding trajectories, including both successful and unsuccessful simulation runs. The EPO algorithm addresses several new challenges presented by comparing high dimensional curves coming from folding trajectories. A detailed case study on miniprotein Trp-cage <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> demonstrates that our algorithm can detect similarities at rather low level, and extract biologically meaningful folding events.</p> <p>Conclusion</p> <p>The EPO algorithm is general and applicable to a wide range of applications. We demonstrate its generality and effectiveness by applying it to aligning multiple protein structures with low similarities. For user's convenience, we provide a web server for the algorithm at <url>http://db.cse.ohio-state.edu/EPO</url>.</p

    Final Technical Report for "Feature Extraction, Characterization, and Visualization for Protein Interaction via Geometric and Topological Methods"

    Full text link
    Shape analysis plays an important role in many applications. In particular, in molecular biology, analyzing molecular shapes is essential to the fundamental problem of understanding how molecules interact. This project aims at developing efficient and effective algorithms to characterize and analyze molecular structures using geometric and topological methods. Two main components of this project are (1) developing novel molecular shape descriptors; and (2) identifying and representing meaningful features based on those descriptors. The project also produces accompanying (visualization) software. Results from this project (09/2006â10/2009) include the following publications. We have also set up web-servers for the software developed in this period, so that our new methods are accessible to a broader scientific community. The web sites are given below as well. In this final technical report, we first list publications and software resulted from this project. We then briefly explain the research conducted and main accomplishments during the period of this project
    corecore