3 research outputs found

    A simple and effective algorithm for the maximum happy vertices problem

    Get PDF
    In a recent paper, a solution approach to the Maximum Happy Vertices Problem has been proposed. The approach is based on a constructive heuristic improved by a matheuristic local search phase. We propose a new procedure able to outperform the previous solution algorithm both in terms of solution quality and computational time. Our approach is based on simple ingredients implying as starting solution gen- erator an approximation algorithm and as an improving phase a new matheuristic local search. The procedure is then extended to a multi-start configuration, able to further improve the solution quality at the cost of an acceptable increase in compu- tational time

    Integrating operations research into green logistics:A review

    Get PDF
    Logistical activities have a significant global environmental impact, necessitating the adoption of green logistics practices to mitigate environmental effects. The COVID-19 pandemic has further emphasized the urgency to address the environmental crisis. Operations research provides a means to balance environmental concerns and costs, thereby enhancing the management of logistical activities. This paper presents a comprehensive review of studies integrating operations research into green logistics. A systematic search was conducted in the Web of Science Core Collection database, covering papers published until June 3, 2023. Six keywords (green logistics OR sustainable logistics OR cleaner logistics OR green transportation OR sustainable transportation OR cleaner transportation) were used to identify relevant papers. The reviewed studies were categorized into five main research directions: Green waste logistics, the impact of costs on green logistics, the green routing problem, green transport network design, and emerging challenges in green logistics. The review concludes by outlining suggestions for further research that combines green logistics and operations research, with particular emphasis on investigating the long-term effects of the pandemic on this field.</p

    Multi-Objective Optimization of Green Transportation Operations in Supply Chain Management

    Get PDF
    Supply chain is the integration of manufacturing process where raw materials are converted into final products, then delivered to customers. Supply chains consists of two basic integrated process that interact together: (1) production and inventory and (2) distribution and logistics. Maximizing competitiveness and profitability are of the main goals of a supply chain. Accounting only for economic impacts as variable and fixed costs does not serve the main goal of the supply chain. Therefore, considering customer satisfaction measures in distribution models is essential in supply chain management. Models that addressed the three objectives simultaneously handled one of the objectives as a constraint with a certain threshold in the problem, while others used weighted utility functions to address the problem objective in deterministic environment. This thesis focuses on the multi-objective Vehicle Routing Problem (VRP) in green environment. The proposed Green VRP (GVRP) deals with three different objectives simultaneously that considers economic, environmental, and social aspects. A new hybrid search algorithm to solve the capacitated VRP is presented and validated in Chapter 2. The developed algorithm combines the evolutionary genetic search with a new local search heuristic that considers both locations and demand quantities of the nodes to be visited in routing decisions, not just the distances travelled. The algorithm is then used to solve the multi-objective GVRP in Chapter 3. The objectives of the developed GVRP model are minimizing the total transportation operations cost, minimizing the fuel consumption, and maximizing customer satisfaction. Moreover, a new overlap index is developed to measure the amount of overlap between customers’ time windows that provides an indication of how tight/constrained the problem is. The model is then adapted to consider the uncertainty in travel times, service times, and unpredictable demands of customers in Chapter 4. Pareto fronts were obtained and trade-offs between the three objectives are presented in both deterministic and stochastic forms. Furthermore, analysis of the effects of changing vehicle capacity and customer time windows relaxation are presented
    corecore